
User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 1

User’s Manual of ISaGRAF Embedded Controllers

 By ICP DAS CO. , LTD. & ICP DAS-USA , January 2002, All Rights Reserved

The "User’s Manual of ISaGRAF Embedded Controllers" is intended for integrators,
programmers, and maintenance personnel who will be installing and maintaining an I-
8417/8817/8437/8837, I-7188EG, I-7188XG & Wincon-8037/8337/8737 series controller
system featuring the ISaGRAF Workbench software program.

Please refer to CD-ROM:\napdos\isagraf\wincon\Difference_between_i8437_w8337.pdf &
ReadMe.pdf for Wincon-8037/8337/8737

ICP DAS CO., LTD. would like to congratulate you own your purchase of our ISaGRAF
controller. The ease to integration of the controller system and the power of the IEC 61131-3
ISaGRAF software program combine to make a powerful, yet inexpensive industrial process
control system.

Legal Liability
ICP DAS CO., LTD. assumes no liability for any and all damages that may be incurred by the
user as a consequence of this product. ICP DAS CO., LTD. reserves the right to change this
manual at any time without notice.

ICP DAS CO., LTD. constantly strives to provide our customers with the most reliable and
accurate information possible regarding our products. However, ICP DAS CO., LTD. assumes
no responsibility for its use, or for any infringements of patents or other rights of third parties
resulting from its use.

Trademark & Copyright Notice
The names of products are used for identification purposes only, and are the registered
trademarks of their respective owners or companies.

Copyright January 2002, by ICP DAS CO., LTD. All Rights Reserved.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 2

Table of Contents

USER’S MANUAL OF ISAGRAF EMBEDDED CONTROLLERS... 1

Legal Liability ... 1
Trademark & Copyright Notice .. 1

TABLE OF CONTENTS ... 2

REFERENCE GUIDE.. 10

SPECIFICATIONS: I-8437 / 8837 .. 11

SPECIFICATIONS: I-8417 / 8817 .. 13

SPECIFICATIONS: I-7188EG.. 15

SPECIFICATIONS: I-7188XG ... 17

SELECTION GUIDE... 19

CHAPTER 1: SOFTWARE & HARDWARE INSTALLATION... 24

1.1: INSTALLING THE ISAGRAF WORKBENCH SOFTWARE PROGRAM ... 24
1.2: INSTALLING THE ICP DAS UTILITIES FOR ISAGRAF.. 28
1.3: CONNECTING YOUR PC TO THE CONTROLLER... 29

1.3.1: Setting The NET-ID Addresses For The I-8xx7 Controller System.. 29
1.3.2: Downloading & Communicating Via Modbus With The I-8xx7 .. 30
1.3.3: Connecting Your PC To The I-8xx7 COM1 Port ... 30
1.3.4: Connecting Your PC To The I-8xx7 COM2 Port ... 31
1.3.5: Connecting One PC To Several I-8417/8817 Controllers ... 31
1.3.6: Changing The COM1 & COM2 Baud Rate Setting ... 32
1.3.7: Deleting An ISaGRAF Project From The I-8xx7 Controller ... 34
1.3.8: Connecting Your PC To The I-8437/8837 Ethernet Port... 34
1.3.9: Multi-Clients Connection to The I-8437/8837 Ethernet Port .. 36

1.4: CONTROLLER TO CONTROLLER DATA EXCHANGE: FBUS ... 37
1.5: LINKING I-7000 AND I-87K MODULES FOR REMOTE I/O ... 38
1.6: CREATING A MODBUS LINK WITH THE I-8XX7 CONTROLLER ... 39
1.7: LINKING TO AN MMI INTERFACE DEVICE ... 41
1.8: USING N-PORT COM.. 42

CHAPTER 2: GETTING STARTED .. 43

2.1: A SIMPLE LADDER LOGIC (LD) PROGRAM... 43
2.1.1: Programming LD... 46
2.1.2: Connecting The I/O.. 68
2.1.3: Compiling The Example LD Project .. 70
2.1.4: Simulating The LD Project .. 71
2.1.5: Download & Debugging The Example LD Project ... 73

2.2: A SIMPLE STRUCTURED TEXT (ST) PROGRAM ... 77
2.2.1: Example ST Program... 81

2.3: A SIMPLE FUNCTION BLOCK DIAGRAM (FDB) PROGRAM ... 85
2.3.1: Programming The Example FBD Program ... 85
2.3.2: Simulating The FBD Program ... 91

2.4: A SIMPLE INSTRUCTION LIST (IL) PROGRAM ... 94
2.5: A SIMPLE SEQUENTIAL FUNCTION CHART (SFC) PROGRAM.. 97

2.5.1: Programming The Example SFC Program.. 99
2.5.2: Editing The SFC Program ... 102

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 3

2.5.3: Simulating The SFC Program.. 108

CHAPTER 3: ESTABLISHING I/O CONNECTIONS ... 109

3.1: LINKING I/O BOARDS TO AN ISAGRAF PROJECT.. 109
3.1.1: Linking I/O Boards .. 110
3.1.2: Linking Input & Output Board Variables .. 111

3.2: LINKING ANALOG TYPE I/O BOARDS ... 113
3.3: LINKING "PUSH4KEY" & "SHOW3LED" ... 115
3.4: DIRECTLY REPRESENTED VARIABLES .. 116
3.5: D/I COUNTERS BUILT IN THE I-87XXX D/I MODULES .. 119
3.6: AUTO-SCAN I/O.. 121
3.7: PWM OUTPUT.. 123
3.8: COUNTERS BUILT IN PARALLEL D/I BOARDS ... 127
3.10: STEPPING OUTPUT BUILT IN PARALLEL D/O BOARDS.. 128

CHAPTER 4: LINKING CONTROLLERS TO AN HMI PROGRAM... 130

4.1: DECLARING VARIABLE ADDRESSES FOR NETWORK ACCESS ... 130
4.2:READ/WRITE WORD, LONG WORD & FLOAT THROUGH MODBUS ... 136
4.3: USING I-8XX7 AS A MODBUS I/O OR A MODBUS TCP/IP I/O ... 138
4.4: LINKING I-8XX7, I-7188EG/XG & W-8XX7 TO TOUCH 500 ... 143

4.4.1: Program the I-8xx7, I-7188EG/XG & W-8xx7... 144
4.4.2: Program the Touch 510T ... 145

4.5: ACCESS TO WORD & INTEGER ARRAY VIA MODBUS... 165

CHAPTER 5: MODBUS PROTOCOL ... 166

5.1: MODBUS PROTOCOL FORMAT: RTU SERIAL... 166
5.2: MODBUS PROTOCOL FORMAT: TCP/IP ... 171
5.3: ALGORITHM FOR CRC-16 CHECK.. 172

CHAPTER 6: LINKING I-7000 & I-87XX MODULES .. 173

6.1: CONFIGURING THE I-7000 & I-87XX MODULES... 173
6.2: OPENING THE "BUS7000" FUNCTION ... 175
6.3: PROGRAMMING AN I-7000 MODULE... 177
6.4: REDUNDANT BUS7000 ... 180

CHAPTER 7: CONTROLLER TO CONTROLLER DATA EXCHANGE ... 182

7.1: BASIC FBUS RULES... 182
7.2: CONFIGURING AN I-8XX7 TO BE A FBUS "MASTER" OR "SLAVE" ... 183

7.2.1: Configuring The Fbus Master Boolean Packages ... 185
7.3: PROGRAMMING FBUS PACKAGES.. 187
7.4: AN FBUS DATA EXCHANGE EXAMPLE.. 190
7.5: PROGRAMMING THE EBUS.. 195

7.5.1: Basic Ebus Rules.. 195
7.5.2: Configuring the Controller To Be A Ebus "Master" Or "Slave"... 197
7.5.3: Programming Ebus Packages.. 200

CHAPTER 8: LINKING THE CONTROLLER TO MODBUS RTU & OTHER DEVICES 201

8.1: CONFIGURING THE CONTROLLER FOR A MODBUS DEVICE.. 201
8.2: PROGRAMMING A MODBUS DEVICE... 203

CHAPTER 9: COMMONLY USED ISAGRAF UTILITIES.. 207

9.1: CREATING AN ISAGRAF PROJECT GROUPS... 208
9.2: UPLOADING AN ISAGRAF PROJECT .. 209
9.3: SETTING AN ISAGRAF PASSWORD.. 212
9.4: CREATING AN ISAGRAF PROGRAM DIARY ... 214
9.5: BACKING UP & RESTORING AN ISAGRAF PROJECT.. 215
9.6: COPYING & RENAMING AN ISAGRAF PROJECT .. 217
9.7: SETTING COMMENT TEXT FOR AN ISAGRAF PROJECT ... 219

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 4

9.8: SETTING THE SLAVE ID FOR AN ISAGRAF CONTROLLER .. 220
9.9: OPTIMIZING THE ISAGRAF CODE COMPILER .. 221
9.10: USING THE ISAGRAF CONVERSION TABLE... 222
9.11: EXPORT / IMPORT VARIABLE DECLARATIONS VIA MICROSOFT EXCEL... 225
9.12: SPY LIST.. 228

CHAPTER 10: THE RETAINED VARIABLE AND DATA BACKUP... 231

10.1: THE RETAINED VARIABLE .. 231
10.2: DATA BACKUP TO THE EEPROM.. 232
10.3: BATTERY BACKUP SRAM.. 234

10.3.1: Access to the SRAM ... 235
10.3.2: Upload data stored in the SRAM ... 235
10.3.3: Download data to the SRAM.. 237
10.3.4: Operation Functions for the battery backup SRAM... 239

10.4: USING I-8073 - MULTIMEDIACARD TO STORE DATA... 239
10.5: READING & WRITING FILE .. 240

CHAPTER 11: ISAGRAF PROGRAMMING EXAMPLES .. 241

11.1: INSTALLING THE ISAGRAF PROGRAMMING EXAMPLES.. 241
11.2: ISAGRAF DEMO EXAMPLE FILES .. 244
11.3: DESCRIPTION OF SOME DEMO EXAMPLES.. 248

11.3.0 Demo_01A & Demo_03: Do something at specific time.. 248
11.3.1 Demo_02 : Start, Stop And Reset Timer... 252
11.3.2 Demo_17 : R/W Integer Value From/To The EEPROM .. 254
11.3.3 Demo_29: Store 1200 Short Int Every 75 sec & Send To PC Via Com3 .. 256
11.3.4 Demo_33 : R/W User Defined protocol Via Com3:RS232/RS485 ... 261

CHAPTER 12: SENDING EMAILS.. 269

12.1: INTRODUCTION ... 269
12.2: PROGRAMMING THE “EMAIL” .. 270

CHAPTER 13: REMOTELY DOWNLOAD VIA MODEM_LINK .. 274

13.1: INTRODUCTION ... 274
13.2: DOWNLOAD PROGRAM VIA MODEM_LINK .. 275

CHAPTER 14: SPOTLIGHT : SIMPLE HMI ... 282

14.1 A Spotlight Example:... 282

CHAPTER 15: CREATING USER-DEFINED FUNCTIONS... 298

15.1: CREATING FUNCTIONS INSIDE ONE PROJECT ... 298
15.2: CREATING FUNCTIONS IN THE LIBRARY .. 303

CHAPTER 16: LINKING MMICON... 307

16.1: HARDWARE INSTALLATION .. 307
16.2: CREATE BACKGROUND PICTURE OF THE MMICON .. 308
16.3: WRITING CONTROL PROGRAM .. 308

CHAPTER 17: SMS: SHORT MESSAGE SERVICE ... 310

17.1: HARDWARE INSTALLATION .. 310
17.2: A SMS DEMO EXAMPLE ... 311

CHAPTER 18 : MOTION .. 315

18.1: INSTALL MOTION DRIVER.. 315
18.2: INTRODUCTION ... 317

18.2.1: System Block Diagram.. 317
18.2.2: DDA Technology... 317

18.3: HARDWARE .. 319
18.3.1: I-8000 hardware address .. 319

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 5

18.3.2: LED Indicator ... 320
18.3.3: Hardware Configuration .. 320
18.3.4: Pin assignment of connector CN2... 323

18.4: SOFTWARE.. 327
I/O connection: ... 327
Setting commands: .. 328
M_regist Register one I-8091 .. 328
M_r_sys Reset all setting ... 329
M_s_var Set motion system parameters... 330
M_s_dir Define output direction of axes.. 331
M_s_mode Set output mode ... 331
M_s_serv Set servo ON/OFF... 332
M_s_nc Set N.O. / N.C. ... 332
Stop commands: .. 333
M_stpx Stop X axis... 333
M_stpy Stop Y axis ... 333
M_stpall Stop X & Y axes... 333
Simple motion commands: .. 334
M_lsporg Low speed move to ORG ... 334
M_hsporg High speed move to ORG ... 334
M_lsppmv Low speed pulse move ... 335
M_hsppmv High speed pulse move.. 335
M_nsppmv Normal speed pulse move.. 336
M_lspmv Low speed move.. 336
M_hspmv High speed move.. 337
M_cspmv Change speed move ... 337
M_slwdn Slow down to low speed ... 338
M_slwstp Slow down to stop ... 338
Interpolation commands: .. 339
M_intp Move a short distance on X-Y plane .. 339
M_intln Move a long distance on X-Y plane .. 340
M_intln2 Move a long distance on X-Y plane.. 341
M_intcl2 Move a circle on X-Y plane .. 342
M_intar2 Move a arc on X-Y plane.. 343
M_intstp Test X-Y plane moving command ... 344
I-8090 encorder commands: ... 345
M_r_enco Reset I-8090’s encorder value to 0... 345

CHAPTER 19: ETHERNET COMMUNICATION AND SECURITY.. 346

CHAPTER 20: C INTERFACE ... 347

CHAPTER 21: WEB SERVER FOR THE WINCON-8XX7 .. 348

CHAPTER 22: VB.NET V.S. THE WINCON-8XX7 ... 349

APPENDIX A: ISAGRAF FUNCTIONS & FUNCTION BLOCKS FOR THE I-8XX7, I-7188EG/XG & W-8XX7
CONTROLLER.. 350

APPENDIX A.1: STANDARD ISAGRAF FUNCTION BLOCKS ... 350
APPENDIX A.2: ADDING NEW FUNCTION BLOCKS TO ISAGRAF.. 352
APPENDIX A.3: I-8XX7 & I-7188EG/XG’S 7-SEGMENT LED REFERENCE TABLE .. 354
APPENDIX A.4: FUNCTION BLOCKS FOR THE CONTROLLER.. 355

ARRAY_R .. 355
ARRAY_W ... 356
ARY_F_R... 357
ARY_F_W.. 357
ARY_N_R .. 358
ARY_N_W.. 358

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 6

ARY_W_R.. 359
ARY_W_W... 359
BCD_V .. 360
BIN2ENG .. 360
BIT_WD .. 360
COMARY_R .. 361
COMARY_W ... 361
COMAY_NW ... 362
COMAY_WW... 363
COMCLEAR.. 364
COMCLOSE.. 364
COMOPEN ... 365
COMOPEN2 ... 366
COMREAD.. 367
COMREADY ... 368
COMSTR_W.. 369
COMWRITE .. 370
CRC_16... 371
DI_CNT... 372
EBUS_B_R.. 372
EBUS_B_W ... 372
EBUS_N_R.. 373
EBUS_N_W... 373
EBUS_STS... 373
EEP_B_R .. 374
EEP_B_W.. 374
EEP_BY_R .. 375
EEP_BY_W ... 375
EEP_EN .. 376
EEP_N_R .. 376
EEP_N_W ... 376
EEP_PR .. 377
EEP_WD_R... 377
EEP_WD_W.. 377
EMAIL... 378
FBUS_B_R.. 379
FBUS_B_W ... 379
FBUS_N_R.. 380
FBUS_N_W... 380
FBUS_STS... 380
F_CREAT.. 381
F_READ_B.. 381
F_READ_F.. 381
F_READ_W... 382
F_SEEK... 382
F_WRIT_B .. 382
F_WRIT_F .. 383
F_WRIT_W.. 383
GET_SN .. 384
INP10LED... 385
INP16LED... 386
INT_REAL... 387
I_RESET.. 387
I7000_EN .. 387
LONG_WD.. 388
MBUS_B_R ... 388
MBUS_BR1 ... 388
MBUS_B_W .. 389

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 7

MBUS_N_R... 390
MBUS_NR1... 390
MBUS_N_W.. 391
MBUS_ R... 392
MBUS_ R1... 393
MBUS_WB .. 394
MI_BOO.. 395
MI_INP_N... 395
MI_INP_S.. 396
MI_INT.. 396
MI_REAL .. 397
MI_STR ... 397
REAL_INT... 398
REAL_STR .. 398
PID_AL ... 399
PWM_DIS ... 399
PWM_EN .. 399
PWM_EN2 .. 399
PWM_ON .. 399
PWM_OFF.. 399
PWM_STS ... 399
S_B_R.. 400
S_B_W... 400
S_BY_R ... 401
S_BY_W... 401
S_DL_DIS ... 402
S_DL_EN .. 402
S_DL_RST... 402
S_DL_STS ... 402
SET_LED .. 403
S_FL_AVL... 404
S_FL_INI... 405
S_FL_RST ... 405
S_FL_STS.. 406
SMS_GET.. 407
SMS_GETS.. 408
SMS_SEND ... 409
SMS_STS ... 410
SMS_TEST .. 411
S_M_R... 412
S_M_W.. 412
S_MV... 413
S_N_R ... 414
S_N_W... 414
S_R_R.. 415
S_R_W... 415
S_WD_R.. 416
S_WD_W ... 416
STR_REAL .. 417
SYSDAT_R .. 418
SYSDAT_W.. 419
SYSTIM_R ... 420
SYSTIM_W .. 421
TIME_STR... 422
TWIN_LED.. 422
VAL_HEX.. 423
VAL10LED.. 423
VAL16LED.. 424

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 8

V_BCD .. 424
WD_BIT .. 425
WD_LONG.. 425

APPENDIX B: SETTING THE IP, MASK & GATEWAY ADDRESS OF THE I-8437/8837 & I-7188EG
CONTROLLERS.. 426

APPENDIX C: UPDATE THE I-8417 / 8817 / 8437 / 8837 CONTROLLER TO NEW HARDWARE DRIVER.... 428

APPENDIX C.1: SETTING I-8XX7 & I-7188EG’S COM1 AS NONE-MODBUS-SLAVE PORT.. 430

APPENDIX D: TABLE OF THE ANALOG IO VALUE .. 431

I-87013, I-7013, I-7033.. 431
I-8017H.. 432
I-87017, I-7017 .. 433
I-87018, I-7011, I-7018.. 434
I-7021... 436
I-7022... 436
I-8024... 437
I-87024, I-7024 .. 437

APPENDIX E: LANGUAGE REFERENCE ... 438

ISAGRAF .. 439

LANGUAGE REFERENCE.. 439

ALTERSYS INC... 439

E.1 PROJECT ARCHITECTURE .. 440
E.1.1 Programs ... 440
E.1.2 Cyclic and sequential operations... 440
E.1.3 Child SFC and FC programs... 441
E.1.4 Functions and sub-programs ... 441
E.1.5 Function blocks.. 442
E.1.6 Description language... 443
E.1.7 Execution rules .. 444

E.2 COMMON OBJECTS.. 445
E.2.1 Basic types ... 445
E.2.2 Constant expressions ... 445
E.2.3 Variables.. 447
E.2.4 Comments .. 450
E.2.5 Defined words.. 451

E.3 SFC LANGUAGE ... 453
E.3.1 SFC chart main format .. 453
E.3.2 SFC basic components... 453
E.3.3 Divergences and convergences.. 455
E.3.4 Macro steps.. 457
E.3.5 Actions within the steps.. 458
E.3.6 Conditions attached to transitions ... 464
E.3.7 SFC dynamic rules... 466
E.3.8 SFC program hierarchy... 466

E.4 FLOW CHART LANGUAGE ... 468
E.4.1 FC components .. 468
E.4.2 FC complex structures ... 471
E.4.3 FC dynamic behaviour... 471
E.4.4 FC checking ... 472

E.5 FBD LANGUAGE... 473
E.5.1 FBD diagram main format .. 473
E.5.2 RETURN statement .. 474

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 9

E.5.3 Jumps and labels.. 474
E.5.4 Boolean negation ... 475
E.5.5 Calling function or function blocks from the FBD... 475

E.6 LD LANGUAGE ... 477
E.6.1 Power rails and connection lines... 477
E.6.2 Multiple connection ... 478
E.6.3 Basic LD contacts and coils... 479
E.6.4 RETURN statement .. 485
E.6.5 Jumps and labels.. 485
E.6.6 Blocks in LD .. 486

E.7 ST LANGUAGE.. 488
E.7.1 ST main syntax... 488
E.7.1 Expression and parentheses... 488
E.7.3 Function or function block calls .. 489
E.7.4 ST specific boolean operators.. 490
E.7.5 ST basic statements.. 492
E.7.6 ST extensions ... 497

E.8 IL LANGUAGE... 503
E.8.1 IL main syntax.. 503
E.8.2 IL operators ... 504

APPENDIX F: DIMENSION ... 511

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 10

Reference Guide
English manual:
 I-8000 & I-7188 CD: \napdos\isagraf\8000\english_manu\ “user_manual_i_8xx7.pdf“
 Wincon CD: \napdos\isagraf\wincon\english_manu\ “user_manual_i_8xx7.pdf”

中文使用手冊中文使用手冊中文使用手冊中文使用手冊:
 I-8000 & I-7188 CD: \napdos\isagraf\8000\chinese_manu\ “chinese_user_manual_i_8xx7.pdf”
 Wincon CD: \napdos\isagraf\wincon\chinese_manu\ “chinese_user_manual_i_8xx7.pdf”

I-8000 Hardware Manual:
 Please refer to I-8000 CD\NAPDOS\8000\index.htm .

Resource on the Internet:
 Newly updated ISaGRAF IO libraries, drivers and manuals can be found at
 http://www.icpdas.com/products/8000/isagraf.htm

Technical Service:
 Please contact local agent or email problem-report to service@icpdas.com
 New information can be found at www.icpdas.com

USB To RS-232/485/422 Converter:
 http://www.icpdas.com/products/7000/i-7561.htm

I-7000

RS485

USB To RS-232/485/422 Converter

I-7561

PC with USB port

I-87K

http://www.icpdas.com/products/8000/isagraf.htm
mailto:service@icpdas.com
http://www.icpdas.com/
http://www.icpdas.com/products/7000/i-7561.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 11

Specifications: I-8437 / 8837
Power supply
Power requirements 10 to 30VDC (unregulated)
Power consumption 20W (when I/O slots are empty)
Protection Built-in power protection & network protection circuit
General environment
Operating temperature -25°C to +75°C
Storage temperature -30°C to +85°C
Humidity 0 to 95 % (non-condensed)
System
CPU Am188™ES,40MHz, or compatiable
Watchdog timer 0.8 second
Real time clock Year-2000 compliance. Gives hour, minute, sec, date of week,

date of month, month & year (1980 to 2079)
SRAM 512Kbytes
FLASH Memory 512Kbytes, Erase unit is 64K bytes, 100,000 erase/write cycles
NVSRAM 31 bytes, battery backup, data valid up to 10 years
EEPROM 2048 bytes, retention > 100 years. 1,000,000 erase/write cycles
SMMI Five 7-Seg. Led, four push buttons & three Led on the front panel.

It can display message, value, input value, simulate input & ouput.
I/O slots 4 empty slots for I-8437, 8 empty slots for I-8837

Accept parallel & serial I/O boards
NET ID 8 dip switch to set NET ID as 1 to 255
Serial ports
COM1 RS232: TXD,RXD,GND, Speed: 115200 bps max.

Program download port.
Ethernet 10M bps, NE2000 compatible, 10 BaseT, Program download port.
COM3 Can be configed as RS232 or S485, Speed: 115200 bps max.

RS232: TXD,RXD,RTS,CTS,GND, RS485: Data+, Data-
COM4 RS232: Full modem signals, Speed: 115200 bps max.

TXD,RXD,RTS,CTS,DSR,DTR,CD,RI,GND.

Development software
ISaGRAF IEC61131-3 standard. Languages: LD, ST, FBD, SFC, IL & FC

Motion control
The I-8417/8817/8437/8837 can integrate with one I-8091(2-axes)
or two I-8091(4-axes) motion board to do motion control. When
doing motion control, Ethernet communication is not available.

PWM output
Pulse Width Modulation
output

8 channels max. for one controller.
500Hz max. for Off=1ms & On=1 ms
Output square curve: Off: 1 to 32767 ms, On: 1 to 32767 ms
Optional parallel D/O boards: i-8037, 8041, 8042, 8054, 8055,

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 12

8056, 8057, 8060, 8063, 8064, 8065, 8066,8068, 8069
Counters
Parallel D/I counter 8 ch. max. for one controller. Counter value: 32 bit

500Hz max. Min. pulse width > 1ms
Optional parallel D/I boards: i-8040, 8042, 8051, 8052, 8053,
 8054, 8055, 8058, 8063, 8077

Serial D/I counter Counter input: 100Hz max. Counter value: 0 to 65535 (16 bit)
Optional serial I-87K D/I boards: i-87051, 87052, 87053, 87054,
87055, 87058, 87063

Remote D/I counter All remote I-7000 & I-87K D/I modules support counters.
100Hz max. Counter value: 0 to 65535 (16 bit)

High speed counter i-87082: 100kHz max. 32 bit, i-8080: 450kHz max. 32 bit

Protocols
Modbus serial protocol COM1 default for connecting ISaGRAF, PC/HMI & MMI panels.
Modbus TCP/IP protocol Ethernet port for connecting ISaGRAF & PC/HMI.
Remote I/O COM3 or COM4 supports I-7000 I/O modules & (I-87K base + I-

87K serial I/O boards) as remote I/O.
Max. 64 I/O module for one controller

Modbus slave I/O devices COM1 or COM3 or COM4 (or COM5 if multi-serial port boards are
plugged) supports Modbus master protocol to connect to other
Modbus slave I/O devices

Fbus A software mechanism built in COM3 port to exchange data
between ICP DAS’s ISaGRAF controllers.

Ebus A software mechanism built in Ethernet port to exchange data
between ICP DAS’s ISaGRAF Ethernet controllers.

SMS:
Short Message Service

COM4 or COM5 can link to a GSM modem to support SMS. User
can request data or control the controller by cellular phone. The
controller can also send data & alarms to user’s cell. phone.
Optional GSM modems: GM29:GSM 900/1800 MHz

User defined protocol User can write his own protocol applied at COM1, COM3, COM4
(& COM5 to COM20 if multi-serial port boards are plugged).

Modem_Link Supports PC remotely download & monitor & I-
8417/8817/8437/8837 through a normal modem.

MMICON / LCD COM3 or COM4 supports ICP DAS’s MMICON. The MMICON is
featured with a 240 x 64 dot LCD and a 4 x 4 Keyboard. It can
display picture, string, integer, float, and input a character, string,
integer and float.

Redundant Bus7000 Two ISaGRAF controllers can link to remote I-7000 & I-87K I/O
modules at the same time. Only one controller is active to control
these remote I/Os. If one is dead, the other one will take over the
control of remote I/Os.

Battery backup SRAM
Data, date & time can be stored at S256/S512, and then PC can
load these data via COM1 or COM2.
PC can also download pre-defined data to the S256/S512.
Optional: S256: 256kbytes, S512: 512kbytes

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 13

Specifications: I-8417 / 8817
Power supply
Power requirements 10 to 30VDC (unregulated)
Power consumption 20W (when I/O slots are empty)
Protection Built-in power protection & network protection circuit
General environment
Operating temperature -25°C to +75°C
Storage temperature -30°C to +85°C
Humidity 0 to 95 % (non-condensed)
System
CPU Am188™ES,40MHz, or compatiable
Watchdog timer 0.8 second
Real time clock Year-2000 compliance. Gives hour, minute, sec, date of week,

date of month, month & year (1980 to 2079)
SRAM 512Kbytes
FLASH Memory 512Kbytes, Erase unit is 64K bytes, 100,000 erase/write cycles
NVSRAM 31 bytes, battery backup, data valid up to 10 years
EEPROM 2048 bytes, retention > 100 years. 1,000,000 erase/write cycles
SMMI Five 7-Seg. Led, four push buttons & three Led on the front panel.

It can display message, value, input value, simulate input & ouput.
I/O slots 4 empty slots for I-8417, 8 empty slots for I-8817

Accept parallel & serial I/O boards
NET ID 8 dip switch to set NET ID as 1 to 255
Serial ports
COM1 RS232: TXD,RXD,GND, Speed: 115200 bps max.

Program download port.
COM2 RS485: Data+, Data-, Speed: 115200 bps max.

Self-tuner ASIC inside, Program download port.
COM3 Can be configed as RS232 or S485, Speed: 115200 bps max.

RS232: TXD,RXD,RTS,CTS,GND, RS485: Data+, Data-
COM4 RS232: Full modem signals, Speed: 115200 bps max.

TXD,RXD,RTS,CTS,DSR,DTR,CD,RI,GND.
Development software
ISaGRAF IEC61131-3 standard. Languages: LD, ST, FBD, SFC, IL & FC
Motion control

The I-8417/8817/8437/8837 can integrate with one I-8091(2-axes)
or two I-8091(4-axes) motion board to do motion control. When
doing motion control, Ethernet communication is not available.

PWM output
Pulse Width Modulation
output

8 channels max. for one controller.
500Hz max. for Off=1 & On=1 ms
Output square curve: Off: 1 to 32767 ms, On: 1 to 32767 ms
Optional parallel D/O boards: i-8037, 8041, 8042, 8054, 8055,
8056, 8057, 8060, 8063, 8064, 8065, 8066,8068, 8069

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 14

Counters
Parallel D/I counter 8 ch. max. for one controller. Counter value: 32 bit

500Hz max. Min. pulse width > 1ms
Optional parallel D/I boards: i-8040, 8042, 8051, 8052, 8053,
 8054, 8055, 8058, 8063, 8077

Serial D/I counter Counter input: 100Hz max. Counter value: 0 to 65535 (16 bit)
Optional serial I-87K D/I boards: i-87051, 87052, 87053, 87054,
87055, 87058, 87063

Remote D/I counter All remote I-7000 & I-87K D/I modules support counters.
100Hz max. Counter value: 0 to 65535 (16 bit)

High speed counter i-87082: 100kHz max. 32 bit, i-8080: 450kHz max. 32 bit

Protocols
Modbus serial protocol COM1 & COM2 default supports Modbus serial protocol for

connecting ISaGRAF, PC/HMI & MMI panels.
Remote I/O COM3 or COM4 supports I-7000 I/O modules & (I-87K base + I-

87K serial I/O boards) as remote I/O.
Max. 64 I/O module for one controller

Modbus slave I/O devices COM1 or COM3 or COM4 (or COM5 if multi-serial port boards are
plugged) supports Modbus master protocol to connect to other
Modbus slave I/O devices

Fbus A software mechanism built in COM3 port to exchange data
between ICP DAS’s ISaGRAF controllers.

SMS: Short Message
Service

COM4 or COM5 can link to a GSM modem to support SMS. User
can request data or control the controller by cellular phone. The
controller can also send data & alarms to user’s cell. phone.
Optional GSM modems: GM29:GSM 900/1800 MHz

User defined protocol User can write his own protocol applied at COM1, COM3, COM4
(& COM5 to COM20 if multi-serial port boards are plugged).

Modem_Link Supports PC remotely download & monitor I-
8417/8817/8437/8837 through a normal modem.

MMICON / LCD COM3 or COM4 supports ICP DAS’s MMICON. The MMICON is
featured with a 240 x 64 dot LCD and a 4 x 4 Keyboard. User can
use it to display picture, string, integer, float, and input a character,
string, integer and float.

Redundant Bus7000 Two ISaGRAF controllers can link to remote I-7000 & I-87K I/O
modules at the same time. Only one controller is active to control
these remote I/Os. If one is dead, the other one will take over the
control of remote I/Os.

Battery backup SRAM
Data, date & time can be stored at S256/S512, and then PC can
load these data via COM1 or COM2.
PC can also download pre-defined data to the S256/S512.
Optional: S256: 256kbytes, S512: 512kbytes

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 15

Specifications: I-7188EG
Power supply
Power requirements 10 to 30VDC (unregulated)
Power consumption 7188EG:2W , 7188EGD: 3W
Protection Built-in power protection & network protection circuit

General environment
Operating temperature -25°C to +75°C
Storage temperature -40°C to +85°C
Humidity 0 to 95 % (non-condensed)

System
CPU Am188™ES,40MHz, or compatiable
Watchdog timer 1.6 second
Real time clock Year-2000 compliance. Gives hour, minute, sec, date of week,

date of month, month & year (1980 to 2079)
SRAM 512Kbytes
FLASH Memory 512Kbytes, Erase unit is 64K bytes, 100,000 erase/write cycles
NVSRAM 31 bytes, battery backup, data valid up to 10 years
EEPROM 2048 bytes, retention > 100 years. 1,000,000 erase/write cycles
Display for I-7188EGD Five 7-Seg. Led on the front. It can display message & value.
Expansion I/O bus One optional Xxxx series I/O board can be plugged inside I-

7188EG/D.
NET ID Set by software

Ethernet port
10M bps, NE2000 compatible, 10 BaseT, Program download port.

Serial ports
COM1 RS232: TXD,RXD,RTS,CTS,GND, Speed: 115200 bps max.

Program download port.
COM2 RS485: D+, D- , Speed: 115200 bps max.

Self-tuner ASIC inside

Development software
ISaGRAF Supports IEC61131-3 standard. Programming languages: LD, ST,

FBD, SFC, IL & FC

PWM output
Pulse Width Modulation
output

All Xxxx series D/O boards support PWM output.
8 channels max. for one controller.
500Hz max. for Off=1 & On=1 ms
Output square curve:
 Off: 1 to 32767 ms, On: 1 to 32767 ms

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 16

Counters
Parallel D/I counter All Xxxx series D/I boards support D/I counter.

8 ch. max. for one controller. Counter value: 32 bit
500Hz max. Min. pulse width > 1ms

Remote D/I counter All remote I-7000 & I-87K D/I modules support counters.
100Hz max. Counter value: 0 to 65535 (16 bit)

Remote high speed
counter

Optional i-87082:100kHz max. , 32 bit

Protocols
Modbus serial protocol COM1 default supports Modbus serial protocol for connecting

ISaGRAF, PC/HMI & MMI panels.
Modbus TCP/IP protocol Ethernet port supports Modbus TCP/IP protocol for connecting

ISaGRAF & PC/HMI.
Remote I/O COM2 (or COM3:RS485 if found) supports I-7000 I/O modules &

(I-87K base + I-87K serial I/O boards) as remote I/O.Max. 64 I/O
modules for one controller

Modbus slave I/O devices COM1 or COM2 (or COM3 if found) supports Modbus master
protocol to connect to other Modbus slave I/O devices

Fbus A software mechanism built in COM2 port to exchange data
between ICP DAS’s IsaGRAF controllers.

Ebus A software mechanism built in Ethernet port to exchange data
between ICP DAS’s ISaGRAF Ethernet controllers.

SMS: Short Message
Service

(COM3:RS232 or COM4:RS232 if found) can link to a GSM
modem to support SMS. User can request data or control the
controller by cellular phone. The controller can also send data &
alarms to user’s cell. phone.
Optional GSM modems: GM29:GSM 900/1800 MHz

User defined protocol User can write his own protocol applied at COM1, COM2 & (COM3
to COM8 if found).

MMICON / LCD (COM3:RS232 if found) supports ICP DAS’s MMICON. The
MMICON is featured with a 240 x 64 dot LCD and a 4 x 4
Keyboard. User can use it to display picture, string, integer, float,
and input a character, string, integer and float.

Redundant Bus7000 Two ISaGRAF controllers can link to remote I-7000 & I-87K I/O
modules at the same time. Only one controller is active to control
these remote I/Os. If one is dead, the other one will take over the
control of remote I/Os.

Battery backup SRAM
Data, date & time can be stored at X607/X608, and then PC can
load these data via COM1.
PC can also download pre-defined data to the X607/X608.
Optional:
 X607:128kbytes , X608:512kbytes

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 17

Specifications: I-7188XG
Power supply
Power requirements 10 to 30VDC (unregulated)
Power consumption 7188XG:2W , 7188XGD: 3W
Protection Built-in power protection & network protection circuit

General environment
Operating temperature -25°C to +75°C
Storage temperature -40°C to +85°C
Humidity 0 to 95 % (non-condensed)

System
CPU Am188™ES,40MHz, or compatiable
Watchdog timer 1.6 second
Real time clock Year-2000 compliance. Gives hour, minute, sec, date of week,

date of month, month & year (1980 to 2079)
SRAM 512Kbytes
FLASH Memory 512Kbytes, Erase unit is 64K bytes, 100,000 erase/write cycles
NVSRAM 31 bytes, battery backup, data valid up to 10 years
EEPROM 2048 bytes, retention > 100 years. 1,000,000 erase/write cycles
Display for I-7188XGD Five 7-Seg. Led on the front. It can display message & value.
Expansion I/O bus One optional Xxxx series I/O board can be plugged inside I-

7188XG/D.
NET ID Set by software

Serial ports
COM1 Can be used as RS232 or RS485 , Speed: 115200 bps max.

RS232 TXD,RXD,RTS,CTS,GND
RS485: D+, D-, self-tuner inside
Program download port.

COM2 RS485: D+, D- , Self-tuner ASIC inside , Speed: 115200 bps max.

Development software
ISaGRAF Supports IEC61131-3 standard. Programming languages: LD, ST,

FBD, SFC, IL & FC

PWM output
Pulse Width Modulation
output

All Xxxx series D/O boards support PWM output.
8 channels max. for one controller.
500Hz max. for Off=1 & On=1ms
Output square curve:
 Off: 1 to 32767 ms, On: 1 to 32767 ms

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 18

Counters
Parallel D/I counter All Xxxx series D/I boards support D/I counter. 8 ch. max. for one

controller.
Counter value: 32 bit, 500Hz max. Min. pulse width > 1ms

Remote D/I counter All remote I-7000 & I-87K D/I modules support counters.
100Hz max. , Counter value: 0 to 65535 (16 bit)

Remote high speed
counter

Optional i-87082:100kHz max. 32 bit

Protocols
Modbus serial protocol COM1 supports Modbus serial protocol for connecting PC/HMI &

MMI panels.
Remote I/O COM2 (or COM3:RS485 if found) supports I-7000 I/O modules &

(I-87K base + I-87K serial I/O boards) as remote I/O.Max. 64 I/O
modules for one controller

Modbus slave I/O devices COM2 (or COM3 if found) supports Modbus master protocol to
connect to other Modbus slave I/O devices

Fbus A software mechanism built in COM2 port to exchange data
between ICP DAS’s IsaGRAF controllers.

SMS: Short Message
Service

(COM3:RS232 or COM4:RS232 if found) can link to a GSM
modem to support SMS. User can request data or control the
controller by cellular phone. The controller can also send data &
alarms to user’s cell. phone.
Optional GSM modems: GM29:GSM 900/1800 MHz

User defined protocol User can write his own protocol applied at COM2 & (COM3 to
COM8 if found).

MMICON / LCD (COM3:RS232 if found) supports ICP DAS’s MMICON. The
MMICON is featured with a 240 x 64 dot LCD and a 4 x 4
Keyboard. User can use it to display picture, string, integer, float,
and input a character, string, integer and float.

Redundant Bus7000 Two ISaGRAF controllers can link to remote I-7000 & I-87K I/O
modules at the same time. Only one controller is active to control
these remote I/Os. If one is dead, the other one will take over the
control of remote I/Os.

Battery backup SRAM
Data, date & time can be stored at X607/X608, and then PC can
load these data via COM1.
PC can also download pre-defined data to the X607/X608.
Optional:
 X607:128kbytes , X608:512kbytes

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 19

Selection Guide
Power supply
ACE-540A 24V/1.7A power supply(panel Mount)
DIN-540A 24V/1.7A power supply(DIN-Rail mount)
KA-52F 24V/1A power supply(no mounting)
DIN-KA52F 24V/1A power supply(DIN-Rail mountong)
KWM020-1824F 24V/0.75A power supply (No-mounting)

Development tools
ISaGRAF-256 ISaGRAF Workbench Software, up to 256 I/O tags.
ISaGRAF Book-E User’s manual of ISaGRAF controllers (English)
ISaGRAF Book-C User’s manual of ISaGRAF controllers (Chinese, traditional)

ISaGRAF controller
I-8417 ISaGRAF I-8000 controller, 4 empty slots
I-8817 ISaGRAF I-8000 controller, 8 empty slots
I-8437 ISaGRAF I-8000 ethernet controller, 4 empty slots
I-8837 ISaGRAF I-8000 ethernet controller, 8 empty slots
I-7188XG ISaGRAF I-7188 controller
I-7188XGD ISaGRAF I-7188 controller with display
I-7188EG ISaGRAF I-7188 ethernet controller
I-7188EGD ISaGRAF I-7188 ethernet controller with display
W-8037 ISaGRAF Wincon-8000 controller, No I/O slot
W-8337 ISaGRAF Wincon-8000 controller, 3 empty slots
W-8737 ISaGRAF Wincon-8000 controller, 7 empty slots

Battery backup SRAM
S256 256Kbytes battery backup SRAM for I-8417 /8817/8437/8837
S512 512Kbytes battery backup SRAM for I-8417 /8817/8437/8837
X607 128Kbytes battery backup SRAM for I-7188XG/7188EG
X608 512Kbytes battery backup SRAM for I-7188XG/7188EG

MMICON / LCD MMICON + 240x64 Graphic LCD

GSM modem
GM29 900/1800 GSM/GPRS External Modem

I-87K expansion base
I-87K4 Remote I-87K I/O base, 4 empty slots
I-87K5 Remote I-87K I/O base, 5 empty slots
I-87K8 Remote I-87K I/O base, 8 empty slots
I-87K9 Remote I-87K I/O base, 9 empty slots

Motion control board
I-8091 2-axes stepping/servo motor control card
I-8090 3-axes encoder card

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 20

Timer/Counter board
I-8080 4-ch. counter/frequency, 32 bit
I-87082 2 channel counter/Frequency, 32 bit

Multi-serial board
I-8112 2 port RS232
I-8114 4 port RS232
I-8142 2 port RS485/422
I-8144 4 port RS485/422

Parallel analog I/O board
I-8017H 8-ch. 14-bit analog input, each ch. can be different input type (V,

mA) & range
I-8024 4-ch. 14-bit analog output, each ch. can be different output type

(V,mA) & range

Parallel digital I/O board
I-8037 16-ch. isolated open-drain output
I-8040 32-ch. isolated digital input
I-8041 32-ch. isolated digital output
I-8042 Isolated digital 16-ch. input & 16-ch. output
I-8051 16-ch. non-isolated digital input
I-8052 8-ch. isolated digital input (differential)
I-8053 16-ch. isolated digital input (single ended)
I-8054 Isolated digital 8-ch. input & 8-ch. output
I-8055 Non-isolated digital 8ch. input & 8ch. output
I-8056 16-ch. non-isolated O.C. output
I-8057 16-ch. isolated O.C. output
I-8058 8-ch. isolated digital input, AC/DC
I-8060 6-ch. relay output
I-8063 Isloated digital 4-ch. input & 4-ch. relay
I-8064 8-ch. power relay output
I-8065 8-ch. SSR-AC output
I-8066 8-ch. SSR-DC output
I-8068 8-ch. relay output
I-8069 8-ch. Photo Mos relay output
I-8077 8-ch. digital input & 8-ch. output simulator

Serial analog I/O board
I-87013 4-ch. RTD input
I-87017 8-ch. analog input
I-87018 8-ch. thermocouple input
I-87022 2-ch. 12-bit analog output, each ch. can be different output type

(V,mA) & range
I-87024 4-ch. 14-bit analog output
I-87026 2-ch. 16-bit analog output, each ch. can be different output type

(V,mA) & range

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 21

Serial digital I/O board
I-87051 16-ch. non-isolated digital input
I-87052 8-ch. isolated digital input (differential)
I-87053 16-ch. isolated digital input (single ended)
I-87054 Isolated digital 8-ch. input & 8-ch. output
I-87055 Non-isolated digital 8ch. input & 8ch. output
I-87057 16-ch. isolated O.C. output
I-87058 8-ch. isolated digital input, AC/DC
I-87063 Isloated digital 4-ch. input & 4-ch. relay
I-87064 8-ch. power relay output
I-87065 8-ch. SSR-AC output
I-87066 8-ch. SSR-DC output
I-87068 8-ch. relay output

Conveter & Repeater
PCISA-7520R PCI/ISA bus RS-232 to RS-485/422 card
PCISA-7520AR RS-232 to RS-422/RS-485 card with D-sub 9-pin cable
I-7520 RS-232 to RS-485 converter
I-7520R I-7520 with 3000V DC isolation at RS-485 side
I-7520A RS-232 to RS-422/RS-485 converter
I-7520AR I-7520A with 3000V DC isolation at RS-485 side
I-7561 USB to RS-232/422/485 Converter
I-7510 RS-485 isolated high speed repeater
I-7510R RS485/RS422 isolated high speed repeater
I-7510AR Three way Isolated RS-422/485 Repeater

RS485 Hub 3-way isolated RS485 to 3 ports RS485 hub

Man Machine Interface
Touch506L 5.7" 4-Gray STN Panel display with touch
Touch506S 5.7" Color STN Panel display with touch
Touch510T 10.4" Color TFT Panel Display With Touch

Wireless Modem
SST-2450 Wireless Modem Module with RS-232/RS-485 Interface

I-7000 analog I/O module
I-7011 1-ch. thermo-couple input (16-bit), 1-ch. D/I & 2-ch. D/O
I-7011D I-7011 with display
I-7011P 1-ch. thermo-couple input (16-bit), 1-ch. D/I & 2-ch. D/O
I-7011PD I-7011P with display
I-7012 1-ch. analog input (16-bit), 1-ch. D/I & 2-ch. D/O
I-7012D I-7012D with display
I-7012F Fast mode I-7012 (12-bit), normal 16-bit
I-7012FD I-7012F with display
I-7013 1-ch. RTD input (16-bit)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 22

I-7013D I-7013 with display
I-7033 3-ch. RTD input (16-bit)
I-7033D I-7033 with display
I-7014D 1-ch. analog/transmitter input (16-bit) with display, 1-ch. D/I & 2-

ch. D/O
I-7016 1-ch. strained gauge input (16-bit), 1-ch. D/I & 4-ch. D/O
I-7016D I-7016 with display
I-7016P 1-ch. strained gauge input (16-bit), 1-ch. D/I & 4-ch. D/O
I-7016PD I-7016 with display
I-7017 8-ch. analog input (16-bit)
I-7017F Fast mode I-7017 (12-bit), normal (16-bit)
I-7018 8-ch. thermocouple input (16-bit)
I-7018P 8-ch. thermocouple input (16-bit)
I-7021 1-ch. analog output (12-bit)
I-7021P 1-ch. analog output (16-bit)
I-7022 2-ch. analog output (12-bit), each ch. can be different output type

(V,mA) & range
I-7024 4-ch. analog output (14-bit)

I-7000 digital I/O module
I-7041 14-ch. isolated digital input
I-7041D I-7041 with LED display
I-7042 13-ch. isolated O.C. output
I-7042D I-7042 with LED display
I-7043 16-ch. non-isolated O.C. output
I-7043D I-7043 with LED display
I-7044 Isolated digital 4-ch. input & 8-ch. output
I-7044D I-7044 with LED display
I-7050 7-ch. digital input & 8-ch. output
I-7050D I-7050 with LED display
I-7050A 7 digital input & 8 output (current source)
I-7050AD I-7050A with LED display
I-7052 8-ch. isolated digital input (6 differential + 2 single end)
I-7052D I-7052 with LED display
I-7053 16-ch. digital input
I-7053D I-7053 with LED display
I-7060 4-ch. isolated input & 4-ch. relay output
I-7060D I-7060 with LED display
I-7063 8-ch. isolated input & 3ch. power relay
I-7063D I-7063D with LED display
I-7063A 8-ch. isolated input & 3ch. AC-SSR output
I-7063AD I-7063A with LED display
I-7063B 8-ch. isolated input & 3ch. DC-SSR output
I-7063BD I-7063B with LED display
I-7065 4-ch. isolated input & 5ch. power relay
I-7065D I-7065 with LED display
I-7065A 4-ch. isolated input & 5ch. AC-SSR relay

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 23

I-7065AD I-7065A with LED display
I-7065B 4-ch. isolated input & 5ch. DC-SSR relay
I-7065BD I-7065B with LED display
I-7066 7-ch. Photo Mos relay output
I-7066D I-7066 with LED display
I-7067 7-ch. relay output
I-7067D I-7067 with LED display

I-7000 counter module
I-7080 2 high speed counter/frequency input
I-7080D I-7080 with display

Parallel I/O board For I-7188XG & I-7188EG
X107 6-ch. D/I and 7-ch. D/O
X109 7-ch. PhotoMos Relay
X110 14-ch. D/I
X111 13-ch. D/O
X119 7-ch. D/O and 7-ch. D/I
X202 7-ch. A/D (0~20mA)
X203 2-ch. A/D (0~20mA), 2-ch. D/I, 6-ch. D/O
X303 1-ch. A/D (+/-5V), 1-ch. D/A (+/-5V), 4-ch. D/I, 6-ch. D/O
X304 3-ch. A/D (+/-5V), 1-ch. D/A (+/-5V), 4-ch. D/I, 4-ch. D/O
X305 7-ch. A/D (+/-5V), 1-ch. D/A (+/-5V), 2-ch. D/I, 2-ch. D/O
X307 8-ch. A/D (+/-10V), 2-ch. D/I, 2-ch. D/O (will be available)
X308 4-ch. A/D (+/-10V), 6-ch. D/O (will be available)
X310 ch. A/D (0~10V), 1-ch. A/D (0~20mA),

2-ch. D/A (0~10V), 3-ch. D/I, 3-ch. D/O
RS232/422/485 board For I-7188XG & I-7188EG
X503 1-Port RS-232 (5-Pin)
X504 2-Port RS-232 (5-Pin) and (9-Pin)
X505 3-Port RS-232 (5-Pin)
X506 6-Port RS-232 (3-Pin)
X507 1-Port RS-422/485, 4-ch. D/I, 4-ch. D/O
X508 1-Port RS-232 (5-Pin), 4-ch. D/I, 4-ch. D/O
X509 2-Port RS-232 (3-Pin), 4-ch. D/I, 4-ch. D/O
X510 1-Port RS-232 (3-Pin), 5-ch. D/I, 5-ch. D/O, EEPROM 128K x2
X511 3-Port RS-485
X512 4-Port RS-232 (3-Pin) ,1-ch. RS-485

(will be available)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 24

Chapter 1: Software & Hardware Installation
NOTE:
The I-8xx7 abbreviation is for the I-8417, I-8437, I-8817 and I-8837 controllers, while W-8xx7 is
the abbreviation for the Wincon-8037/8337/8737 controller.

1.1: Installing The ISaGRAF Workbench Software Program
Chapter 1 of the "User’s Manual of ISaGRAF Embedded Controllers" manual details how to
properly setup and run the I-8xx7, I-7188EG/XG & W-8xx7 controller system and the ISaGRAF
Workbench software program.

Numerous illustrations and pictures are provided in this chapter to assist the integrator and
programmer with the basics of how to properly setup the hardware and software for their
system.

If you are not familiar with the setup of either the I-8xx7, I-7188EG/XG & W-8xx7 controller
system or the ISaGRAF Workbench software program, please take the time to thoroughly read
Chapter 1. The procedures detailed in this chapter are easy to understand, and will assist the
user to quickly and easily setup and start running the controller and the ISaGRAF software
program.

For the I-8xx7, I-7188EG/XG & W-8xx7 controller system and the ISaGRAF Workbench
software to operate properly, it is imperative that each is setup correctly. This chapter covers
the details of how to setup the controller system and the ISaGRAF Workbench software in a
minimum of time.

Before you can start programming the I-8xx7, I-7188EG/XG & W-8xx7 embedded controller
system with the ISaGRAF software program, you must first install the ISaGRAF Workbench
software program on a target PC.

Hardware Requirements
• A Personal Computer With At Least A Pentium, 133 MHz Or Faster Processor
• 32 Mbytes Memory (Preferably 64 Mbytes RAM)
• A Hard Drive With At Least 128 Mbytes Of Storage Space (Preferably Larger)
• At Least One RS-232 Serial Port

Software Requirements
One of the following computer operating systems must be installed on the target computer
system before you can install the ISaGRAF Workbench software program.
• Windows 95
• Windows 98
• Windows NT Version 3.51 or Windows NT Version 4.0
• Windows 2000 Or Windows XP

Steps To Installing The ISaGRAF Workbench Program

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 25

Insert the ISaGRAF Workbench CD into your CD-ROM drive. Normally the auto-start program
will activate the "install.bat" file automatically. If your computer does not have the auto-start
feature active, use the Windows Explorer and go to the CD-ROM drive where the Workbench
CD is installed, then double-click on the "install.bat" file listed on the ISaGRAF CD. If the
"install.bat" file is not found on your ISaGRAF CD, then double-click on the "ISaGRAF.exe" file
to start the installation process.

Once you have started the "install.bat" file, a dialog box will appear as shown on the next page.
Select the language version of the ISaGRAF software program you would like to use. The
English version is used on all subjects and examples throughout this manual.

Once you have selected to install the ISaGRAF Workbench program and selected the desired
language, just press the "Install" button, and follow the step-by-step directions of each dialog
box as they appear to complete the installation process.

The first dialog box to appear allows the user to define what drive and subdirectory the
ISaGRAF program will install into.

The next dialog box asks the user how much of the ISaGRAF program to you wish to install. By
default, it is best to allow all of the ISaGRAF programs to install.

Once you have selected which programs and applications are to be installed, the installation
process begins, and an installation progress dialog box will appear showing the installation
progress.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 26

Once the ISaGRAF Workbench software installation process has been completed, a Windows
Explorer window will appear showing the installed programs.

The installation process is now complete, and you can begin to use the ISaGRAF software
program.

To begin the ISaGRAF 3.x software program, click on the Windows "Start" button, then on
"Programs", and you should see the ISaGRAF program group as illustrated below.

You will see that six program icons are now associated with the ISaGRAF 3.x software group.
You can select any of the icons to learn more about the ISaGRAF Workbench software
program.

NOTE: You must install the hardware protection device (dongle) provided with the ISaGRAF
software on your computers parallel port to for the ISaGRAF program to achieve fully
authorized functionality.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 27

While using ISaGRAF and the dongle is plugged well, if the “Help” – “About” says “Maximum
number of IO variables: 32”, it means ISaGRAF workbench cannot find the dongle well. Please
reset your PC and then check the “Help” – “About” again. If it still displays “Maximum number of

IO variables: 32”, the dongle driver may not be installed well. Please execute the ISaGRAF
CD_ROM \Sentinel5382\setup.exe for ISaGRAF-80 or \Sentinel\setup.exe for other ISaGRAF
version and then reset the PC again.

Important Notice For Window NT Users
If your computer is using the Windows NT operating system, you will need to add one line to the
"isa.ini" file in the ISaGRAF Workbench "EXE" subdirectory. If the ISaGRAF program is
installed on your computers "C" hard drive, you will find the required file in the following path:

C:\isawin\exe\isa.ini

You can use any ASCII based text editor (such as Notepad or UltraEdit32) to open the "isa.ini"
file. Locate the [WS001] header in the "isa.ini" initialization file (it should be at the top of the file).
Anywhere within the [WS001] header portion of the "isa.ini" initialization file, add the entry
shown below within the [WS001] header:

[WS001]
NT=1
Isa=C:\ISAWIN
IsaExe=C:\ISAWIN\EXE
Group=Samples
IsaApl=c:\isawin\smp
IsaTmp=C:\ISAWIN\TMP

The [WS001] header should now look like the above example. The NT=1 entry addition is
absolutely required for the RS-232 communications to operate properly in the Windows NT
operating environment.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 28

1.2: Installing The ICP DAS Utilities For ISaGRAF
The “ICP DAS Utilities For ISaGRAF” consists of 3 major items.

I/O library (Include I/O libraries of I-8xx7, I-7188EG, I-7188XG & W-8xx7)
Modem_Link utility (Chapter 13)
Auto-scan I/O utility (Section 3.6)

The ISaGRAF Workbench software program must be installed before attempting to install the
“ICP DAS Utilities for ISaGRAF”. If you have not already installed the ISaGRAF Workbench
program, please refer to section 1.1 before continuing.

When the ISaGRAF Workbench program is first installed, it contains only the basic I/O libraries
from CJ International - the authors of the ISaGRAF software program. Users will have to install
the appropriate I/O library files and some utilities before you can properly program the
ISaGRAF controller.

There is a CD-ROM supplied with each of the ISaGRAF controllers with the “ICP DAS Utilities
for ISaGRAF”. Please insert the CD-ROM into your CD-ROM drive. Then run “setup.exe” in the
folder of CD-ROM: \napdos\isagraf\ . Follow the steps to install it.

Note:
If “setup.exe” is not in your CD-ROM, please download “ICP DAS Utilities For ISaGRAF.zip”
from http://www.icpdas.com/products/8000/isagraf.htm

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 29

1.3: Connecting Your PC To The Controller
Note:
Below sections are for the I-8417/8817/8437/8837 controller only, please refer to the
respective “Getting Started” Manual which delivered with the controller for connecting
PC to the I-7188EG/XG or W-8xx7 controller.

1.3.1: Setting The NET-ID Addresses For The I-8xx7 Controller System
For the I-8xx7 controller to properly operate, it must first be addressed correctly.

Default setting � NET-ID=1

1 2 3 4 5 6 7 8
NET-ID=00
NET-ID=01 ON
NET-ID=02 ON
NET-ID=03 ON ON
NET-ID=04 ON

NET-ID=FF ON ON ON ON ON ON ON ON
Default setting � NET-ID=01
For ISaGRAF workbench , it can only recognize NET-ID
from 01 to FF (1~255).
The NET-ID of every Main Control Unit in the same
network must be unique (different from each other).

NET-ID=0x02 NET-ID=0x04

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 30

1.3.2: Downloading & Communicating Via Modbus With The I-8xx7
The I-8xx7 controller provides two COM ports standard for downloading the ISaGRAF program
and debugging your application. The COM1 port is an RS-232 port and the COM2 port is an
RS-485 port for the I-8417/8817 controller system, and the I-8437/8837 features an Ethernet
port connection instead of a second COM port.

Both of the COM1 and COM2 ports of the I-8417/8817 controllers support the Modbus
communications protocol. For I-8437/8837 controllers, COM1 support Modbus protocol while
COM2 is an ethernet port support Modbus TCP/IP protocol. There are an abundant number of
Human Machine Interface (HMI) and Man Machine Interface (MMI) software programs and
additional hardware devices that support the Modbus or/and Modbus TCP/IP communications
protocols. All of these programs and devices can access data from the I-8xx7 controller system
through the two COM ports using the Modbus / Modbus TCP/IP protocol.

1.3.3: Connecting Your PC To The I-8xx7 COM1 Port
When you receive your I-8xx7 controller system, there is one (1) RS-232 communications
cable provided with the system. The cable is used to connect your PC to the I-8xx7 controller
or to an I-7520 RS-232/RS-485 converter that can be purchased from ICP DAS.

The communication parameters for the I-8xx7 COM1 port defaultly be set to 19200-baud rate, 8
data bits, no stop bits, and one parity bit ("19200, 8, N, 1").
Normal RS-232 Pin Wiring Assignments

For the ISaGRAF Workbench RS-232 communications to operate properly, only the RXD, TXD,
and the GND signals are used. If your PC is running a hardware device or software program
that uses the CTS and DSR signals, you will need to wire the RTS-CTS and DTR-DSR signals
together as shown below.

HOST COMPUTER

+10V~30VDC
POWER SUPPLY

CA0915

841X/881X

COM1 of I-8xx7
Default 19200,8 N,1

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 31

1.3.4: Connecting Your PC To The I-8xx7 COM2 Port
If your PC is connecting to an I-8417/8817's COM2 port (RS-485), the maximum distance
between the I-7520 (the RS-232/RS-485 converter) and an I-8xx7 controller is up to 1,200
meters (4,000 feet). The distance between the two is dependent on the baud rate; the rule to
follow is the lower you set the baud rate, the longer the distance can be.

1.3.5: Connecting One PC To Several I-8417/8817 Controllers
An additional feature of using the COM2 port of the I-8417/8817 is that you can configure an
RS-485 network from one PC to link to numerous I-8417/8817 controllers. The PC can
download ISaGRAF applications to each I-8417/8817 controller system on the RS-485 network.
The maximum number of I-8417/8817 controllers that can be networked via the RS-485
network is 255 (Not recommended to use so many).
To create an RS-485 network you must first insure that each I-8417/8817 controller has a
unique NET-ID address, and each of the controllers link the "DATA+" to the "DATA+" signal,
and the "DATA-" to the "DATA-" signals.

7520

841X/881X

DATA+

DATA-

GND

V+

GND

V+

HOST COMPUTER

+10V~+30VDC
POWER SUPPLY

CA0915

COM2
Default 19200,8,N,1

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 32

Lastly, you must plug ONE of the I-8417/8817's JP-1 and JP-2 on the power board to position 1
to 2, (resistance applied to the network). The other I-8417/8817's JP-1 and JP-2 plugs should
be left at the default setting of connecting 2 to 3 (no resistance).

It is recommended to add two terminal resistors (try 220Ω, then 110Ω, and then 330Ω) on the
nearest I-8417/8817 and farest I-8417/8817 for long distance RS485 network.

1.3.6: Changing The COM1 & COM2 Baud Rate Setting
The baud rate for the I-8417/8817/8437/8837’s COM1 port (RS-232) can be set between 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps(bit per second). Other
parameter can not be changed, they are always - 8 data bits, No parity, and 1 stop bit . The
default baud rate for I-8417/8817/8437/8837’s COM1 & I-8417/8817’s COM2 is 19200.

To change the baud rate setting on the COM1 & I-8417/8817’s COM2 port, first power off the
controller. Then press in and hold in the first two buttons on the front panel of the controller
and then power back up the controller system as shown below.

DATA+

DATA-

DATA+

DATA-

NET-ID =1 NET-ID =7 NET-ID = nNET-ID =3

COM2, RS485 NetworkP
C

I-8x17 I-8x17 I-8x17 I-8x17

i7520
RS232/485 Conveter

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 33

The first read out to appear is the “SEL 0” or "SEL 1" (“SEL 0” is to set COM1’s baudrate,
while “SEL 1” is to set COM2’s baudrate).

Press the “Up” or “Dn” to change selection, then press the "OK" button (third button on the
panel), and the "BAU x" setting will appear.

You can now change the baud rate setting by pressing the "UP" or "Down" button to the desired
baud rate setting. The settings for the baud rate are as follows: (0) 1200, (1) 2400, (2) 4800, (3)
9600, (4) 19200, (5) 38400, (6) 57600, (7) 115200, (8) 300 & (9) 600. Press “OK” to save the
selected setting. And then press some “Cancel” to exit the hardware setting.

Important Notice: The ISaGRAF workbench’s default setting for PC’s COM1 & COM2 is
19200, 8, N, 1. If you have changed the I-8417/8817/8437/8837 COM1/COM2’s baud rate to
other value. You should change your ISaGRAF Workbench’s COMM to the same setting
before they can link to each other. (Please refer to Section 2.5)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 34

1.3.7: Deleting An ISaGRAF Project From The I-8xx7 Controller
There may be occasions when you will need to delete the ISaGRAF project from the controller
system. To begin this, you follow the same control start up routine as changing the baud rate.
You first press in and hold in the first two buttons on the front panel of the controller and then
power back up the I-8417/8817/8437/8837 controller to gain the ability to change the
parameters.

When the first display appear, press the "Up" or "Down" button until "SEL 2" (Select 2) appears
in the LED readout.

Press the "Up" or "Down" buttons until "dEL" appears in the LED read out.

Press the "Up" or "Down" buttons until "y" appears in the LED readout then press the "OK"
button. This will delete the currently installed ISaGRAF project from the controller system. After
that press some “Cancel” to exit the hardware setting.

1.3.8: Connecting Your PC To The I-8437/8837 Ethernet Port
The I-8437 and I-8847 controller systems feature a built in Ethernet port. The COM2 port is
replaced from an RS-485 to Ethernet.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 35

8X3X : Ethernet 10M
8X4X : Ethernet 10M / 100M

8X4X : Ethernet 10M / 100M
8X3X : Ethernet 10M

HOST COMPUTER

+10V~30VDC
POWER SUPPLY

841X/881X

1 2 43 65 7 8

HUB

To Ethernet Router

Before you can download an ISaGRAF application to the I-8437/8837 controller system using
the Ethernet port, you must first setup the Ethernet port to properly communicate with the host
PC.

On the I-8437/8837, Set IP, Mask and Gateway address:
Refer to Appendix B or CD_ROM:\NAPDOS\ISaGRAF\8000\driver\setip.txt

On your PC:
First open an ISaGRAF project and select a program you wish to communicate between your
PC and the I-8437/8837 controller system. Next, select the "Link Setup" button on the project
screen as shown below.

A "PC-PLC Link Parameters" dialog box will appear as shown below. From here select the
"Ethernet" communications option and click on the "Setup" button.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 36

Once you have clicked on the "Setup" button, an "Ethernet Link Parameters" dialog box will
appear. Set the "Port Number" to "502" and enter in the Internet address (IP) of the I-
8437/8837 controller.

Once you have entered the appropriate information, click on the "OK" button, and now you
have configured your PC to communicate with the I-8437/8837 through the Ethernet port.

1.3.9: Multi-Clients Connection to The I-8437/8837 Ethernet Port
Each I-8437 / 8837 has an IP address and with a fixed Ethernet port No. 502. Up to 4 PCs can
link to one I-8437 / 8837 throughout Ethernet (Modbus TCP/IP protocol). Another PC or MMI
can link to COM1: RS232 port (Modbus protocol) of the I-8437/8837. Therefore the maximum
number of clients can be linked is 5.

PC/HMI PC/HMI PC/HMIPC/HMI

PC/HMI
MMI

Modbus TCP/IP

 Modbus

IP1 IP2

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 37

1.4: Controller to Controller Data Exchange: Fbus
Connect all COM3's Pin 1 together and Pin 9 together and then one of these I-8xx7 controllers
should set its JP1 and JP2 of the power board to position "1 to 2" (refer to section 1.3.5).
The maximum distance for the Fbus data exchange network is 1200 meters (4,000 feet)
depending on the communication baud rate. The distance between the PC and the I-8xx7
controller system is dependent on the baud rate; the rule to follow is the lower you set the baud
rate, the longer the distance can be.

Pin 1
Pin 9

Pin 1
Pin 9

Pin 1
Pin 9

Pin 1
Pin 9

COM3: Fbus Networking

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 38

1.5: Linking I-7000 and I-87K Modules For Remote I/O
The I-8xx7 controller system can use one of its COM3 or COM4 ports, wile COM2 or COM3 for
I-7188EG/XG, to link to ICP DAS's "I-7000" and “I-87K” series of remote I/O modules. This
configuration can be very useful in applications that require distributed remote I/O throughout
the system.

If you choose to utilize the COM4 port, connect the COM4 port to the I-7520's RS-232 port, and
also connect the "DATA+" to the "DATA+" signal, and the "DATA-" to the "DATA-" signal as
shown below.

You can link up to 64 I-7000 or I-87K series remote modules to one I-8xx7 controller system.
You must remember to set each I-7000 and I-87K remote module must have a unique address,
and be set to the same baud rate as the I-8xx7 controller system.

For more information regarding setting up and programming an I-7000 / I-87K remote module,
please refer to Chapter 6 - "Linking To I-7000 and I-87K Modules".

Pin 1
Pin 9

DATA+
DATA-

DATA+
DATA-

DATA+
DATA-

COM3
RS485

7000 modules

Addr : 1

Addr : 2 Addr : 3, 4, 5, 6

I-87K modules

7000 modules

I-7520

Pin 2
Pin 3
Pin 5

DATA+
DATA-

DATA+
DATA-

DATA+
DATA-

COM4
RS232

Pin 2
Pin 3
Pin 5

DATA+
DATA-

Addr : 1 Addr : 2
Addr : 3, 4, 5, 6

I-87K modules

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 39

1.6: Creating A Modbus Link With The I-8xx7 Controller
The I-8xx7 controller system can be a Modbus "Slave" and/or a Modbus "Master" controller
depending on the application. Through this method you can use the COM1 and COM2 ports of
the I-8xx7 controller system to link to a PC or other HMI products. In this type of configuration,
the I-8xx7 controller system becomes a Modbus slave controller system. For more information
about setting up and programming for Modbus slave, please refer to Chapter 4 – “Linking The
I-8xx7 To An HMI Program”.

If COM3 or COM4 is used to link to other devices that support the Modbus protocol, the I-8xx7
controller system will be the Modbus master controller. For more information about setting up
and programming for Modbus master, please refer to Chapter 8 - "Linking To A Modbus RTU
Or Other Devices".

If the COM3:RS485 port is used for Modbus master, one I-8xx7 can connect to many other
devices. Each device on the link must have a unique NET ID (1 ~ 255) address, and
communicate at same baud rate settings.

If COM4 is used, you can only link one I-8xx7 to one other Modbus device.

Other PLCs
support Modbus

Other devices
support Modbus

Pin 1
Pin 9

COM3
RS485

RS485+
RS485-

RS485+
RS485-

NET ID : 1 NET ID : 2

Other devices
support Modbus

RXD 2
TXD 3
GND 5

COM4
RS232

TXD
RXD
GND
RTS
CTS
DTR
DSR

NET ID : 1

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 40

If the COM4 port of the I-8xx7 controller system is used to connect to one I-7520 remote device,
then the I-8xx7 controller can network to numerous Modbus devices.

Other PLCs
support Modbus Other devices

support Modbus

Pin 2
Pin 3
Pin 5

COM4
RS232

RS485+
RS485-

DATA+
DATA-

I-7520

Pin 2
Pin 3
Pin 5

RS485+
RS485-

NET ID : 1 NET ID : 2

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 41

1.7: Linking To An MMI Interface Device
The COM1 (RS-232) and COM2 (RS-485) ports of the I-8xx7 controller system can be used to
interface with additional Man Machine Interface (MMI) devices such as touch screen displays.
ICP DAS provides a full line of touch screen displays, such as the "Touch" series screens. The
models in the product line include the Touch 506L/506S and Touch 510T MMI products.

If you are using any of the “Touch” series of MMI devices to connect to an I-8xx7 controller, you
can only interface the devices to the COM1 port on the I-8xx7 controller.

For more information regarding interfacing the Touch series of MMI devices to the I-8xx7
controller system, please refer to Chapter 4- "Linking The I-8xx7 To HMI Devices".

RS232
TXD 2
RXD 3
GND 5
CTS 7
RTS 8

 COM1
TXD 2
RXD 3
GND 5

Touch
506L/506S
510T

RS232

COM1

Cable wiring

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 42

1.8: Using N-Port COM
There are some N-Port COM boards that can be used to extend communication ability of the
I-8xx7 controller. The model No. available are as below.

I-8112: 2-channel RS232 Module
I-8114: 4-channel RS232 Module
I-8142: 2-channel RS422/485 Module
I-8144: 4-channel RS422/485 Module

Note:
These N-Port COM boards can only be plugged into slot 0 to slot 3. It doesn’t support
slot 4 to slot 7. That means user can use only Com5 to Com20 of N-Port COM boards.

Some functions can be used to read/write these COM ports. Please refer to Appendix A.4 for
“COMOPEN” , “COMCLOSE” , “COMREADY” , “COMARY_R” , “COMARY_W” , “COMREAD” ,
“COMSTR_W” , “COMWRITE” and “COMCLEAR”.

Pin assignment:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 43

Chapter 2: Getting Started
This chapter provides simple yet effective program examples of how you can use the different
ISaGRAF programming languages available with the I-8417/8817/8437/8837, I-7188EG/XG &
W-8037/8337/8737 controller system. The ISaGRAF programming environment provides a
powerful and flexible way to create industrial control software.

For more extensive information regarding all of the capabilities of the ISaGRAF programming
system, please refer to Appendix E: “Language Reference” of this manual or the “ISaGRAF
USER’S GUIDE” manual which can be found from the CD_ROM of the ISaGRAF workbench.
Its file name is either “ISaGRAF.pdf” or “ISaGRAF.doc”.

This manual provides some program examples and its description, please refer to Chapter 11.

2.1: A Simple Ladder Logic (LD) Program
Ladder Logic Basics
"Ladder Logic" programming (LD) is a graphical representation of Boolean equations,
combining contacts (input arguments) and coils (output results). Ladder Logic most closely
resembles the electrical schematics that an electrician or technician may use to diagnose and
troubleshoot an industrial process controller system.

The LD language enables the programmer to describe the conditions and modifications to
Boolean data by placing "graphical symbols" to represent hardware devices used in a process
control application.

A Simple Ladder Example Program
The following is a step-by-step example on how to create a ladder logic (hence forth referred as
"LD") program using the ISaGRAF Workbench software program provided with the ISaGRAF
controller system.

We will create one another Structured Text (hence forth referred as “ST”) program to indicate
the first PLC scan cycle. That means in this example ISaGRAF project, we have two programs
inside it. One is written in LD and the other is written in ST.

The example project name is “simpleLD”. The name of the LD program of this example project
is “LD1” and “end_init” is the name of the ST program .

Project name
“simpleLD”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 44

Variables Used In The Example LD Program:

Name Type Attribute Description
INIT Boolean Internal initial value at “TRUE”. TRUE means 1st scan cycle
M3 Boolean Internal Indicate a pulse is generated or not.
OUT01 Boolean Output Output 1
OUT02 Boolean Output Output 2
OUT03 Boolean Output Output 3
T1 Timer Internal Time Period of blinking, initial value is set at "T#1s"
Pulse_No Integer Internal To puls one when M3 pulse is generated

initial value is set at "0"

Ladder Logic Program “LD1” Outline:

ST program “end_init” Outline:

INIT := FALSE ;

VAL10LED is only for I-8xx7 &
I-7188EG/XG. W-8xx7 doesn’t
support this block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 45

Process Operation Actions:
Ladder Logic Program “LD1” :
Blink Outputs 1, 2, & 3 with a period of “T1” in the first 15 seconds, “T1” has initial value equal

to 1 second. Atfer these 15 seconds, Outputs 1, 2, & 3 will be turned OFF.
Generate a pulse output every 1 second to the internal boolean variable “M3”.
Plus integer variable “pulse_No” by 1 every time when “M3” pulse is generated.
Display the value of “pulse_No” to the 7-Seg leds of the I-8xx7 or I-7188EG/XG controller.

ST Program “end_init” :
 Set boolean variable “INIT” to FALSE at the end of the PLC scan cycle. So that “INIT” will

be TRUE only at the first scan cycle.

Description of block and some basic LD item:
TOF:To turn off a boolean however delay a time of “PT”.

“IN” is a boolean parameter, if falling from TRUE to FALSE. The timer ticks from 0 to
“PT”
“PT” is a timer parameter, it defines the delay time of output.
 “Q” is the boolean output of this block. It will be turned OFF when “PT” is reached.
“ET” is the timer output of this block. (We don’t use it in this example)

BLINK: To blink a boolean with a period of “CYCLE”.
“RUN” is a boolean parameter, if it is TRUE, the boolean output “Q” will be blinking at
period of the timer parameter “CYCLE”.

VAL10LED: Display a interger value to the 7-Seg leds of the controller.
“RUN_” is a boolean parameter. TRUE to display.
“FSH_” is a boolean parameter. TRUE to blink the display.
“CLK_” is a timer parameter. It defines the blinking period.
“VA_I_” is the integer to display.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 46

“N” coil : Coil with N type means it will be set to a pulse TRUE when the left status is just falling
from TRUE to FALSE.

“Retrun” : To return from the excution if the left status is TRUE, that is, the reset LD rungs of the
program below this “return” will not excute when the left status is TRUE.

2.1.1: Programming LD
Starting & Running The ISaGRAF Workbench Program
Click on the Windows "Start" button, then click on "Programs", then click on "ISaGRAF 3.4",
then click on "Projects" as shown below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 47

2.1.1.1: Creating An ISaGRAF User's Group
Click on the "Select Project Group", and then click on "New Group", then type in the name for
the new user's group you wish to create, and last click on "OK".

Note that the name that you give the "New Project Group" also creates a new sub-directory
corresponding to the project group name in the "c:\isawin" sub-directory.

To get into the new project group, either double click on the new group name, or click on the
new group name (the name will be highlighted) to select the new project group and click on the
"Select" button.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 48

2.1.1.2: Creating A New ISaGRAF Project
To start a new ISaGRAF project, click on the "Create New Project" icon and then enter in the
name for the new project. You can then enter additional information for your project by clicking
on the "Edit" and then "Set Comment Text" menu as illustrated below.

You will now see the name of the new project in the "Project Management" window. Double
click on the name of the new project to open the new project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 49

2.1.1.3: Declaring The ISaGRAF Project Variables
Before you can start creating an ISaGRAF program, you must first declare the variables that
will be used in the ISaGRAF program. To begin this process, first click on the "Dictionary" icon
and then click on the "Boolean" tab to declare the Boolean variables that will be used in our
example program.

To declare the program variables for the ISaGRAF project, double click on the colored area
below the "Boolean" tab, and a "Boolean Variable" window will open. Enter in the name of the
variable to be used in the project. For the purpose of this example program the variable
"Boolean Variable Name" is "INIT", and "Flag to indicate first scan cycle or not" is added to the
"Comment Section". The next item that must be declared is what type of "Attribute" the variable
will possess. In this example program, INIT’s attribute will be an "Internal". Lastly, check on the
“set to true at init” since we need INIT has its initial value as TRUE when the project is just
power up to run. Then press the "Store" button to save the Boolean variable that has been
created.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 50

The new Boolean variable has now been declared. Note the other information areas that are
provided for the programmer to fully explain how the variable will be handled.

NOTE: You MUST make sure that the variable you have declared has the desired Attribute
assigned. If you decide that you want to change a project variable’s attribute, just double click
on the variable name and you can reassign the attribute for the variable.

Using the same method described above, declare the additional Boolean variables for this
example program, "M3". When you have completed the Boolean variable assignments, the
Global Boolean window should look like the example below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 51

There are three outputs used in this example program named "OUT01, OUT02, and OUT03".
ISaGRAF provides a quick and easy way to declare like variables that are sequentially ordered.
To begin this process, click on the "Quick Declaration" icon, and enter in the output number that
you will start with in the "Numbering" from and "To" field (this example uses from 1 to 3). Enter
the "Symbol" name for the output variables being declared, and lastly, set the attribute to
"Output".

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 52

When you click on the "OK" button, all three outputs will be immediately added to the "Global
Boolean" window.

To declare the timer (T1) variable used in this example program, click on the "Timers" tab in the
setup screen. Double click on the colored area and enter the Name as "T1", set the "Attributes"
to "Internal", the "Initial Value" to "T#1s", then click on the "Store" button.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 53

To declare the Integer (pulse_No) variable used in this example program, click on the
"Integers/Reals" tab in the setup screen. Double click on the colored area and enter the Name
as "pulse_No", set the "Attributes" to "Internal", the “Format” to “Integer”, and the "Initial Value"
to "0", then click on the "Store" button.

Once all of the variable characteristics have been properly setup, click on “save” and then click
on "X" at the top right of the setup window to close the variable dictionary for this example
project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 54

2.1.1.4: Creating The Example LD Program
Once all of the variables have been properly declared, you are now ready to create the
example LD program. To start this process, click on the "Create New Program" icon and the
"New Program" window will appear.

Enter the "Name" as "LD1" (the name of our example program), next, click on the "Language"
scroll button and select "Quick LD: Ladder Diagram", and make sure the "Style" is set to "Begin:
Main Program". You can add any desired text to the "Comment" section for the LD program,
but it isn’t required.

The "LD1" program has now been created. To open the "LD1" program, double click on the
"LD1" name.

2.1.1.5: Editing The Example "LD1" Program
When you double click on the "LD1" name the "Quick LD Program" window will appear. To
start programming our LD program, click on "Edit" from the main menu bar, then click on "Insert
Rung" as shown below. “Insert Rung” means to insert a basic LD rung just above the current
position.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 55

Or, you may just simply click on the "F2 (Contact On The Left)” icon, and the following will
appear within the Quick LD Program window.

Click on the "F7 (Block on the right)" icon and you will create a block on the right of the first input
contact.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 56

Click on "F7 (Block on the right)" icon again to create one another block on the right of the first
block.

Then you will get the window as below. Move the cursor to the Coil on the right. Then click on
“F5 (Coil)” to add one coil just below the first coil. And then click on “F5 (Coil)” again to add the
third coil.

Then the window will look like below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 57

Double click anywhere inside of the second block and the "Function Block" assignment window
appears. Select the "BLINK" type function block are using in our example program. To learn
how the "BLINK" function operates you can click on the "Info" button for a detailed explanation
of its functionality.

Using the same procedure to assign the first block to “TOF” as below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 58

Now we are going to assign the associated variable & constant to each item. Double click on
the first contact, a “Select variable” screen appeared. First select the “Scope” to “(Global)” and
the proper type to “Boolean”. Then double click on “INIT” or you may use the keyboard to type
“INIT”.

Using the same procedure to assign OUT01 thru. OUT03 to the associated coil.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 59

Now move your cursor to the left of the parameter “PT” of the “TOF” block. Double click on it,
type “T#15s” (it means 15 second), then press “OK”.

Do the same way to assign “T1” to the left of the parameter “CYCLE” of the “BLINK” block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 60

Now the window will look like below.

To add a new LD rung, first move the cursor to the proper position below the first rung. Then
click on “Edit – Insert rung”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 61

We don’t need the contact in the new rung, move cursor to it, then click on “Cut”.

Now click on “F6 (Block on the left)” , and then double click on inside the block to create an
“BLINK” block.

Assign “T#1s” to the parameter of “CYCLE”, then we got the below window.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 62

Move the cursor to the right coil, then click on “Coil/contact type” some times to assign the type
to “N”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 63

Double click on the N coil to assign “M3” to it.

Now we are going to add another LD rung. Move the cursor to the below position of the second
rung. And click on “F9 (Return)”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 64

Move the cursor to “return” and then click on “F2 (Contact on the left)” to add a contact on the
left.

Then double click on the contact to assign “M3” to it. And change its type to “\” (inverted
contact).

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 65

The procedure to create the forth & the last LD rung is similar as former steps. Please do it by
yourself. The final LD program should look like the below.

Save this LD program and quit.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 66

2.1.1.6: Create The ST "end_init" Program
In this project we need an extra ST program to handle the “INIT” variable.

Click on “Create new program” in the “ … - Programs” window to add a ST program.
Given the Name as “end_init” , Comment as “Handle INIT variable” ,
Language as “ST: Structured Text” , & Style as “End: Main program”. Then click on “OK”.

Now we have two programs inside this project.

ISaGRAF will run these two programs one time in each PLC scan cycle. Programs in the
“begin” area will run first, then the “Sequential” area, and last the “End” area. An ISaGRAF
cycle run in the way as the below scheme.

Process ‘begin’ area

Process ‘Sequential’ area

Process ‘End’ area

Reflash all outputs

ISaGRAF
 Cycle

Scan all inputs

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 67

Double click on “end_init” program to edit it. Click on “save” and then exit when you finish it.
(Any character inside between “(*” and “*)” is the comment.)

Since “INIT” is declared with an initial value “TRUE”, this ST program will let “INIT” set to
“FALSE” at the end of the first scan cycle. In other word, “INIT” will indicate this project is
running in the first scan cycle or not (TRUE: first scan cycle, FALSE: other cycles).

Now we have finished the programming, now we are going to the next step – “Connect the I/O”.

(* An ST demo program *)

 INIT := FALSE ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 68

2.1.2: Connecting The I/O
The ISaGRAF Workbench software program is an open programming system. This allows the
user to create an ISaGRAF program that can operate a large number of different PLC controller
systems. It is the responsibility of the PLC hardware manufacturer to embed the ISaGRAF
"driver" in their respective controller for the ISaGRAF program to operate properly. The ICP
DAS line of I-8417/8817/8437/8837, I-7188EG, I-7188XG & W-8037/8337/8737 series of
controllers have the ISaGRAF driver embedded, creating a powerful and flexible industrial
controller system.

Now that you have created the ISaGRAF example program, now you must connect the I/O to
the controller system. A useful feature of the I-8xx7 controller system is that you can run
program we have created WITHOUT having any I/O boards plugged into the I-8xx7 controller
system. The four pushbuttons on the I-8xx7 controller system can be used as four digital inputs,
and the three left LED’s above the control panel pushbuttons can be used as outputs.

Click on the "I/O Connection" icon as shown in the top picture and the "I/O Connection" window
will appear as shown in the next illustration. For the purpose of this example, you can either
double click on the "9" slot, or just click on the "9" slot, then click on "Edit" and then "Set
Board/Equipment" and then the "I/O Connection" window will appear. This now associates the
four control panel pushbuttons - “push4key” as four digital inputs. (We don’t use it in this
example program since there is no boolean variable declared with “Input” attribution).

“Push4key” & “Show3Led” is only
for the I-8417/8817/8437/8837. If
your controller is I-7188EG/XG or
W-8037/8337/8737, you can also
connect “Push4key” &
“Show3Led” for simulation
however please mark them as
“virtual” board.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 69

IMPORTANT NOTICE: I/O Slots 0 through 7 are reserved for REAL I/O boards that will be
used in the I-8xx7 controller (W-8337/8737 doesn’t have slot 0). You can use slots 8 and above
for additional functionality as illustrated by the example program.

To create the I/O connections for the outputs, double click on the "10" slot, then click on the
"Show3led: 3 indication LED on 8xx7 panel" selection. This will now associate the three LED’s
above the four control panel pushbuttons as the three outputs for the example program. Your
"I/O Connection" window should now look like the screen below.

Remember to click on the "SAVE" icon to save the I/O connections that have been created for
the example program. And click on the “X” to exit the window.

IMPORTANT NOTE: All of the variables with Input and Output attribute MUST be connected
through the I/O connection as described above for any program to be successfully compiled.
Only the Input and Output attributed variables will appear in the "I/O Connections" window. In
this example we have only 3 boolean output variables, they are OUT01, OUT02 & OUT03.

“Push4key” & “Show3Led” is only for the I-
8417/8817/8437/8837. If your controller is I-
7188EG/XG or W-8037/8337/8737, you can also
connect “Push4key” & “Show3Led” for simulation
however please mark them as “virtual” board.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 70

2.1.3: Compiling The Example LD Project
For ANY AND EVERY ISaGRAF program to work properly with any of the I-8xx7, I-7188EG,
7188XG & W-8xx7 controller systems, it is the responsibility of the programmer to properly select
the correct "Compiler Options". You MUST select the "ISA86M: TIC Code For Intel" option as
described below.

To begin the compilation process, first click on the "MAKE" option from the main menu bar, and
then click on "Compiler Options" as shown below.

The "Compiler Options" window will now appear. Make sure to select the options as shown
below then press the "OK" button to complete the compiler option selections.

TIME TO COMPILE THE PROJECT!
Now that you have selected the proper compiler options, click on the "Make Application Code"
icon to compile the example LD project. If there are no compiler errors detected during the
compilation process, CONGRATULATIONS, you have successfully created our example LD
program.

If errors are detected during the compilation process, just click on the "CONTINUE" button to
review the error messages. Return to the Project Editor and correct the errors as outlined in the
error message window.

You may check all options to make better code.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 71

2.1.4: Simulating The LD Project
A powerful program-debugging feature of the ISaGRAF software program is the ability to
"SIMULATE" the program you have developed before loading it into the ISaGRAF controller
system. After successfully compiling the example LD program, click on the "SIMULATE" icon
as shown below.

When you click on the "Simulate" icon three windows will appear. The windows are the
"ISaGRAF Debugger", the "ISaGRAF Debug Programs", and the "I/O Simulator" windows. If
the I/O variable names you have created DO NOT appear in the I/O simulator window, just click
on the "Options" and "Variable Names" selection and the variable names you have created will
now appear next to each of the I/O’s in the simulator window.

 In the "ISaGRAF Debug Program" window, double click on the "LD1" where the cursor below is
positioned. This will open up the ISaGRAF Quick LD Program window and you can see the LD
program you have created.

Close the “..Debugger”
window will exit the
simulation.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 72

Running The Simulation Program
 When you double click on "LD1" in the "ISaGRAF Debug Programs" window, the follow
window should appear.

You can see outputs “OUT01” thru. “OUT03” will blink in the first 15 seconds. And the
“pulse_No” continuously plus one every second.

 You can adjust the "T1" variable while the program is running. To accomplish this, click on the
"Dictionary" icon which will open the "ISaGRAF Global Variables" window as shown in the first
two pictures below. Click on “Timer” tab and then double click on “T1” to change the timer value
to “T#500ms” (this means 0.5 second). Then click on “Write”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 73

2.1.5: Download & Debugging The Example LD Project
The last step required to running the example LD program on the ISaGRAF controller system is
to download the project to the controller (frequently referred to as the "Target" platform").
Before this download can be accomplished you must first establish communications between
your development PC and the controller.

To begin this process, click on the "Link Setup" icon in the "ISaGRAF Programs" window.
When you click on the "Link Setup" icon, the following window will appear.

The "Target Slave Number" is the Node-ID address for the I-8xx7 controller as defined
by the dipswitch settings outlined in Chapter 1, Section 1.3.1. The Node-ID dipswitch is located
in the bottom right portion of the I-8xx7 controller. If your I-8xx7 controller is the first one, the
Node-ID address should be set to "1". The "Communication Port" is the serial port connection
on your development PC, and this is normally either COM1 or COM2.

The communication parameters for the target I-8xx7 controller MUST be set to the same serial
communication parameters for the development PC. For I-8417 and I-8817 controllers (serial
port communications), the default parameters for COM1 (RS232) and COM2 (RS485) ports
are:

Baudrate: 19200
Parity: none
Format: 8 bits, 1 stop
Flow control: none

Default Net-ID of the I-
8xx7, I-7188EG/XG & W-
8xx7 controller is 1 when
shipped out. It can be
switched to be 1 to 255.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 74

IMPORTANT NOTE
It may be necessary to change the COM port settings for the development PC. Depending on
which computer operating system you are using, you will need to make sure that the COM port
can properly communicate to the I-8xx7, I-7188EG/XG & W-8xx7 controller system.

DOWNLOADING THE EXAMPLE PROJECT
Before you can download the project to the controller, you must first verify that your
development PC and the controller are communicating with each other. To verify proper
communication, click on the "Debug" icon in the "ISaGRAF Programs" window as shown
below.

If the development PC and the I-8xx7, I-7188EG/XG & W-8xx7 controller system are
communicating properly with each other, the following window displayed below will appear (or if
a program is already loaded in the controller system, the name of the project will be displayed
with the word "Active" following it.
If the message in the "ISaGRAF Debugger" says "Disconnected", it means that the
development PC and the controller system have not established communications with each
other.

The most common causes for this problem is either the serial port cable not being properly
configured, or the development PC’s serial port communications DO NOT match that of the
controller system.

You may have to either change the serial port communication settings for the development PC
(which may require changing a BIOS setting) or change the "Serial Link Parameters" in the
ISaGRAF program.

If there is a project already loaded in the controller system you will need to stop that project
before you can download the example project. Click on the "STOP" icon as illustrated above to
halt any applications that may be running.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 75

STARTING THE DOWNLOADING PROCESS
From the "ISaGRAF Debugger" window click on the "Download" icon, then click on "ISA86M:
TIC Code For Intel" from the "Download" window as shown below.

The example project will now start downloading to the I-8xx7, I-7188EG/XG & W-8xx7
controller system. A progress bar will appear in the "ISaGRAF Debugger" window showing the
project downloading progress.

When the example project has successfully completed the downloading process to the
controller system the following two windows will appear.

RUNNING THE EXAMPLE LD PROGRAM
You can observe the real time I/O status from several ISaGRAF windows while you are running
the example project. One of the windows is the "I/O Connections" window, which shows each
of the inputs and outputs as assigned. Click on the "I/O Connections" icon in the ISaGRAF

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 76

Debugger window to open the "I/O Connections" screen. Another VERY helpful window you
can open is the "Quick LD Program" window. From this window you can observe the LD
program being executed in real time.

In the window below, the OUT01 thru. OUT03 is blinking in the first 15 seconds. The "Quick LD
Program" window shows the entire ladder logic program in REAL TIME and is an excellent
diagnostic tool for development and troubleshooting.

Though there are numerous steps involved in creating and downloading an ISaGRAF program,
each step is quick and easy to accomplish, and the end result is a powerful and flexible control
development environment for the ISaGRAF controller systems.

PRACTICE, PRACTICE, PRACTICE!
Now that you have successfully created and ran your first ISaGRAF program with the I-8xx7,
I-7188EG/XG & Wincon-8xx7 controller system, you should practice creating more elaborate
and powerful programs. Like any other computer development environment, practice and
experimentation is the key to understanding and success, GOOD LUCK!

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 77

2.2: A Simple Structured Text (ST) Program
A "Structured Text" program is a high-level program language that is designed for automation
process control applications. The "Structured Text (henceforth referred to as "ST") is primarily
used to implement complex procedures that cannot be easily expressed by a graphical
language such as LD or FBD.

An ST program is comprised by a list of "ST Statements", and each "ST Statement" MUST end
with a semi-colon “;”. All characters inside between “(*” and “*)” is comment.

Variables Used In The Example ST Project:

Name Type Attribute Description
INIT Boolean Internal initial value at “TRUE”. TRUE means 1st scan cycle
K1 Boolean Input The first pushbutton on the front panel of the I-8xx7
K2 Boolean Input The second pushbutton on the front panel of the I-8xx7
M1 Boolean Internal Indicate pushbutton K1 is just pushed.
M2 Boolean Internal Indicate pushbutton K2 is just pushed.
TEMP Boolean Internal A boolean variable for temporary use
COUNT Integer Internal A integer value generated by push K1 & K2

initial value is set at "0"

Three programs are used in this example. One is LD program named “LD1”, The other two are
ST programs named respectively as “ST1” & “end_init”.

LD program “LD1” Outline:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 78

ST program “ST1” Outline:

ST program “end_init” Outline:

(* Open Com3 with 9600 baud rate, 8 char. size, no parity, 1 stop bit at first scan cycle *)
if INIT=TRUE then
 TEMP := comopen(3, 9600, 8, 0, 1) ;
end_if ;

(* Do something when K1 or K2 is pushed *)
if (M1=TRUE) or (M2=TRUE) then

 (* COUNT plus 1 when K1 is pushed *)
 if M1=TRUE then
 COUNT := COUNT+1 ;
 end_if ;

 (* COUNT plus 10 when K2 is pushed *)
 if M2=TRUE then
 COUNT := COUNT+10 ;
 end_if ;

 (* save COUNT value to the 5th Pos. of No.2 integer arry *)
 TEMP := ARY_N_W(2, 5, COUNT) ;

 (* write one byte = 2 (hex.) to Com3 *)
 TEMP := COMWRITE(3, 16#2) ;

 (* write 1 integer (1 long integer contains 4 bytes) of Pos. 5 inside No.2 array to Com3 *)
 TEMP := COMAY_NW(3, 2, 1, 5) ;

 (* write one byte = 3 (hex.) to Com3 *)
 TEMP := COMWRITE(3, 16#3) ;

end_if ;

If INIT=TRUE then
INIT := FALSE ;

End_if ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 79

Process Operation Actions:

LD Program “LD1” :
Catch the rising edge status when pushbutton K1 is just pushed and save it into a internal

boolean variable “M1”
Catch the rising edge status when pushbutton K2 is just pushed and save it into a internal

boolean variable “M2”

ST Program “ST1” :
Open Com3 of the I-8xx7 controller with 9600 baud rate, 8 char. size, no parity, 1 stop bit at the

first scan cycle.
Plus “COUNT” value by 1 every time when pushbutton K1 is pushed.
Plus “COUNT” value by 10 every time when pushbutton K2 is pushed.
Send “Count” value to a PC via Com3 of the I-8xx7 controller in the below frame format.

STX Value of COUNT ETX

Lowest byte 2nd lower byte 3rd lower byte Highest byte

STX : Start of frame, byte value = 2
ETX : End of frame, byte value = 3

ST Program “end_init” :
Set boolean variable “INIT” to FALSE at the end of the PLC scan cycle. So that “INIT” will be

TRUE only at the first scan cycle.

Function description:

“P” contact : Contact with P type means the right status will be set to a pulse TRUE when the
contact is just rising from FALSE to TRUE.

Comopen(PORT, BAUD, CHAR, PARI, STOP) : To open a Com port of the I-8xx7 controller

 Parameter
 PORT : Integer 3:COM3 ,4:COM4, ..., 20:COM20
 BAUD : Integer baud rate, 2400, 4800, 9600, 19200, 38400, 57600, 115200
 CHAR : Integer char. size, 7 or 8
 PARI : Integer parity, 0:none, 1:even, 2:odd
 STOP : Integer stop bit, 1 or 2

 Return : boolean ok.: TRUE , fail: FALSE

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 80

Ary_N_W(NUM, ADR, DATA) : Save one long integer into an integer array.

 Parameter
 NUM : Integer save to which array (1-6)
 ADR : Integer save to which Pos. in this array (1-256)
 DATA : Integer the integer value to save

 Return : boolean ok.: TRUE , fail: FALSE

ComWrite(PORT, DATA) : Write one byte to a Com port

 Parameter
 PORT : Integer 3:COM3 ,4:COM4, ..., 20:COM20
 DATA : Integer the byte value (0 - 255) to write

 Return : boolean ok.: TRUE , fail: FALSE

ComAy_NW(PORT, ARY_NO, NUM, POS) : Write an integer array to a Com port

 Parameter
 PORT : Integer 3:COM3 ,4:COM4, ..., 20:COM20
 ARY_NO : Integer the array No. to write (1-6)
 NUM : Integer number of integers to write (0-256)
 POS : Integer start position inside the array to write (1-256)

 Return : boolean ok.: TRUE , fail: FALSE

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 81

2.2.1: Example ST Program
The first step is to create a new project for the example ST program.

Creating The Example ST Project
From the "ISaGRAF Project Management" window click on the "Create New Project" icon and
enter "ST_Exam" for the name for the example ST project.

Declaring The Example ST Variables as below content
Refer to Section 2.1.1.3. "Declaring The Variables" for assistance.

Name Type Attribute Description
INIT Boolean Internal initial value at “TRUE”. TRUE means 1st scan cycle
K1 Boolean Input The first pushbutton on the front panel of the I-8xx7
K2 Boolean Input The second pushbutton on the front panel of the I-8xx7
M1 Boolean Internal Indicate pushbutton K1 is just pushed.
M2 Boolean Internal Indicate pushbutton K2 is just pushed.
TEMP Boolean Internal A boolean variable for temporary use.
COUNT Integer Internal A integer value generated by push K1 & K2

initial value is set at "0"

Creating a LD program “LD1” with the below content.
Refer to Section 2.1.1.4. and 2.1.1.5 for assistance.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 82

Follow the same steps as 2.1.1.6. to create a ST program “end_init” with the below content.

Creating a ST program “ST1” with the below content.
Refer to Section 2.1.1.6. for assistance.

IMPORTANT NOTE
Each ST statement line MUST end with a semi-colon ";" as shown above. After entering in the
above example program remember to click on the "Save" icon to save the program, then click
on "Exit".

If INIT=TRUE then
INIT := FALSE ;

End_if ;

(* Open Com3 with 9600 baud rate, 8 char. size, no parity, 1 stop bit at first scan cycle *)
if INIT=TRUE then
 TEMP := comopen(3, 9600, 8, 0, 1) ;
end_if ;

(* Do something when K1 or K2 is pushed *)
if (M1=TRUE) or (M2=TRUE) then

 (* COUNT plus 1 when K1 is pushed *)
 if M1=TRUE then
 COUNT := COUNT+1 ;
 end_if ;

 (* COUNT plus 10 when K2 is pushed *)
 if M2=TRUE then
 COUNT := COUNT+10 ;
 end_if ;

 (* save COUNT value to the 5th Pos. of No.2 integer arry *)
 TEMP := ARY_N_W(2, 5, COUNT) ;

 (* write one byte = 2 (hex.) to Com3 *)
 TEMP := COMWRITE(3, 16#2) ;

 (* write 1 integer (1 long integer contains 4 bytes) of Pos. 5 inside No.2 array to Com3 *)
 TEMP := COMAY_NW(3, 2, 1, 5) ;

 (* write one byte = 3 (hex.) to Com3 *)
 TEMP := COMWRITE(3, 16#3) ;

end_if ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 83

Use the similar procedure for the "Connecting I/O" as detailed in Section 2.1.2

Use the similar procedure for the "Compilling the project" as detailed in Section 2.1.3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 84

After compiling the example ST project click on the "Simulate" icon to observe the ST program
running.

You may open the dictionary window to see the “COUNT” value. Click on “K1” or “K2”, you will
see the “COUNT” value is changed.

You can now download this example project to the I-8xx7 controller system. Please follow the
same procedure as outlined in Section 2.1.5 .

After downloading to the controller, the program will send 6 bytes via Com3 of the controller
whenever K1 or K2 is pushed. If you have your RS232 monitoring program running on your PC,
you can connect Com3 to your PC to see how it works.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 85

2.3: A Simple Function Block Diagram (FDB) Program
The "Function Block Diagram (FBD) is a graphical programming language that allows a
programmer to build complex procedures by taking existing "Functions" from the ISaGRAF
library and "Wiring" them together graphically to create powerful process control applications.

The following section details how to build a "Function Block Diagram" program with ISaGRAF.
Function Block Diagram programs are extremely useful for managing several control process
programs from a single source.

Example FBD Control Specification:
The following details the variables that will be used in our example Function Block Diagram
program.

Name Type Attribute Description
OUT1 Boolean Output High alarm
OUT2 Boolean Output Low alarm
A1 Integer Internal Simulate a temperature input, initial value is 0

FBD Program Outline:

FBD Program Action:

2.3.1: Programming The Example FBD Program
Creating a Function Block Diagram (henceforth referred to as "FBD") program is very similar to
creating a LD program as outlined in Section 2.1. The following steps detail how easy it is to
create a FBD program.

Creating a New FBD Project
From the "ISaGRAF Project Management" window click on the "Create New Project" icon and
enter the name "FBD_Exam".

If “A1” > 5000, output “OUT1” is "TRUE".
If “A1” < 2000, output “OUT2” is "TRUE".
Other situation, output “OUT1” and “OUT2” are "FALSE"

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 86

After you have created the new FBD project, double click on the "FBD_Exam" name in the
"ISaGRAF Project Management" window to open the new FBD project. Click on the "Create
New Program" icon in the "ISaGRAF Programs" window, which will open the "New Programs"
window.

In the "New Programs" window enter in the name field "Main", and for "Language" make sure
the "FBD – Function Block Diagram" is selected. You can add a comment about your program
also while in the "New Program" window, but it is not mandatory.

Once you have entered in all the information in the "New Programs" window click on the "OK"
button.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 87

Declaring The Variables
For our example FBD program we are going to declare three variables. The variables to be
used are "OUT1", "OUT2", and an integer variable called "A1". Declaring variables for the FBD
program is like declaring variables for the LD program. Refer to Section 2.1.1.3 – "Declaring
The Variables" to review the variable declaration process.

Editing The FBD Program
To create and edit the example FBD program, double click on word "MAIN" in the "ISaGRAF
Programs" window, and then click on the "Insert Function Block" icon as shown below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 88

Move the cursor to approximately the middle of the "ISaGRAF FBD/LD Program" window and
click the mouse one time to add the first function block. Next, double click on the block to select
"> Greater Than". For more information regarding any of the function blocks available in the
ISaGRAF program just click on "Info" button.

Using the same procedure as described above, add a "< Less Than" function block below the
"Greater Than" function block.

Now it is time to add the program variables to the FBD example program. Click on the "Insert
Variable" icon as shown above, and then click on "Integer/Real" from the "ISaGRAF Select
Variable" window. This will cause the variable "A1" to appear in the "ISaGRAF Select Variable"
to appear.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 89

Double click on the highlighted "A1 Simulate Temperature Input" which will then place the
variable "A1" inside of the "ISaGRAF FBD/LD Program" window. Repeat the same process to
add a second "A1" variable.

Click on the "Insert Variable" icon to add the "OUT1" and "OUT2" variables to the right of the
function blocks as shown below.

Lastly, add two additional variables, the first is a constant of "5000" and place it below the first
"A1" variable, then create a second constant of "2000", and place it below the second "A1"
variable.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 90

Your "ISaGRAF FBD/LD Program" window should now look like the above example.
Remember, we have added a total of six variables to the program. We have added the "A1"
variable twice, the "OUT1" variable, the "OUT2" variable, one constant called "5000" and
another constant called "2000" to the FBD example program.

The last task to accomplish is making the connection between each of the variables (and
constants) and the function blocks. Click on the "Draw Connection Line" icon and draw a line
between each of the variables and function blocks as shown below.

The top "A1" variable should connect to the "IN1" of the "> Greater Than" function block, the
"5000" constant to the "IN2" of the "> Greater Than" function block, the bottom "A1" variable to
the "IN1" of the "< Less Than" function block, and the "2000" constant to the "IN2" of the "< Less
Than" function block.

Lastly, connect the "Q" of the "> Greater Than" function block to the "OUT1" variable, and the
"Q" of the "< Less Than" function block to the "OUT2" variable.

Connecting The I/O & Compiling The Project
Follow the same procedure as outlined in Section 2.1.2 and 2.1.3 for connecting the I/O and
compiling the FBD example program. The "ISaGRAF I/O Connection" window should look like
the example below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 91

2.3.2: Simulating The FBD Program
You can now run the "Simulate" on the example FBD program by clicking on the "Simulate"
icon in the "ISaGRAF Programs" window.

When you click on the "Simulate" icon the "ISaGRAF Debugger" window, the "ISaGRAF Debug
Programs", and the "I/O Simulator" window will now open. If you double click on "MAIN" in the
"ISaGRAF Debug Programs" window the "ISaGRAF FBD/LD Program" window will open
showing the state of the program.

Notice that because the "A1" variable is less than 2000 (currently set to 1000 in the example
below) that the "OUT2" output is currently true and the "OUT1" output is false.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 92

To further test the example FBD program, click on the "Dictionary" icon in the "ISaGRAF Debug
Programs" window to open the "Global Dictionary" window, and click on the "Integer/Real" tab.
Click on the highlighted "A1" and the "Write Integer/Real Variable" will open.

Type in "6000" in the "Enter New Value" field and click on the "Write" button. Now the following
changes will be observed.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 93

You can now download the example FBD program to the I-8xx7 controller system. Follow the
same procedure as outlined in Section 2.1.5 for downloading the program to the I-8xx7
controller system.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 94

2.4: A Simple Instruction List (IL) Program
Instruction List (IL) programming is a low level programming language consisting of a list of
instructions. Each instruction always relates to the current result (or IL register) and must
begin on a new line and must contain an operator. The operator indicates the operation that
must be made between the current value and the operand. The result of the operation is
stored again in the result.

Instruction List (IL) programming requires adherence to a strict programming format that must
be followed. Each instruction must begin on a new line, it must contain an operator, completed
with optional modifiers and if necessary, for the specific operation, one or more operands,
separated with commas (","). A label followed by a colon (":") may precede the instruction. If a
comment is attached to an instruction, it must be the last component of the line. Comments
must always begin with (* and end with *). The following is an example of a comment in IL; (*
place comment here *).

This section describes how to program an Instruction List (henceforth referred to as IL)
program. This IL program has the same program specification as the FBD program as outlined
in Section 2.3.

The first step to creating an IL program is to create an IL project. This is accomplished in the
same manner as creating any other ISaGRAF project.

For the purpose of this example IL program I have created a new IL project name of "IL_Exam".
Click on the "OK" button and the "ISaGRAF Project Management" window will appear with the
new project name. Double click on the "IL_Exam" name and the "ISaGRAF Programs" window
will appear. Click on the "Create New Program" icon and the "New Program" window will
appear. Enter "Hello" in the name field (and you can add a program comment if desired) and
make sure to select "IL: Instruction List" from the language field, click on the "OK" button when
you are done.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 95

When you click on the "OK" button the "ISaGRAF Programs" window will open. Double click on
"Hello" and the "ISaGRAF IL Program" window will open.

Declaring The Example IL Variables
This example IL program uses the same variables as the example FBD program, "OUT1",
"OUT2" and the integer variable "A1". Refer to Section 2.1.1.3 "Declaring The Variables" for
assistance. Use the same procedure for the "Connecting I/O" and "Compiling" the program as
detailed in Section 2.1.2 and 2.1.3, and use the same procedure to "Simulate" the program as
detailed in Section 2.3.2.

When you have connected the I/O and compiled the example IL program, click on the
"Simulate" icon and the following window will appear.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 96

Because the variable "A1" value is 0, "OUT1" is set to false and "OUT2" is set to true. Change
the value of "A1" to a value greater than 5001 and you will see that "OUT1" is set to true and
"OUT2" is set to false.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 97

2.5: A Simple Sequential Function Chart (SFC) Program
A Sequential Function Chart (SFC) program is a graphical programming language used to
describe sequential operations. The process is represented as a set of defined steps, linked
by transitions. A Boolean condition is attached to each transition, and actions with the
steps are detailed by using other languages such as ST, IL, LD and FDB.

An SFE program is a graphical set of steps and transitions, linked together by oriented links.
Multiple connection links are used to represent divergences and convergences. Some parts of
the complete program may be separated and represented in the main chart by a single symbol,
call macro steps. The basic graphic rules for an SFC program are:
1. A Step CANNOT Be Followed By Another Step
2. A Transition CANNOT Be Followed By Another Transition

The basic components (graphical symbols) of the SFC programming language are: steps and
initial steps, transitions, oriented links, and jumps to a step.

This section details how to build a Sequential Function Chart (henceforth referred to as SFC)
program.

Example SFC Control Specification:
The following details the variables that will be used in our example SFC program.

Name Type Attribute Description
OUT1 Boolean Output Output 1
OUT2 Boolean Output Output 2
K1 Boolean Input Mode 1 button input
K2 Boolean Input Mode 2 button input
TMR1 Timer Internal Switch time of output, initial value is "T#1s"
Mode Integer Internal 1 means mode1 , 2 means mode2, initial value

is 1

The SFC Program Outline:
When you have completed the "ISaGRAF Programs" window, it should look like the following:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 98

LD Program "SelMode" SFC Program "Main"

 SFC Child Program "Mode1" SFC Child Program "Mode2"

SFC Program Action:
1. When "K1" is pressed, run the "Mode1" program.
2. When "K2" is pressed, run the "Mode2" program.

Mode1; Mode2;

Mode=1; Mode=2;

Mode<>1; Mode<>2;

OUT1(R);
OUT2(R);

GS1.T > TMR1;

GS2.T > TMR1;

OUT1;
OUT2;

OUT1;

OUT2;

GS2.T > TMR1;

GS1.T > TMR1;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 99

2.5.1: Programming The Example SFC Program
The procedure for creating the example SFC program is the same as outlined in Section 2.1.
You must remember to declare the variables "K1", "K2", "OUT1", "OUT2", "TMR1" and "MODE".
The following illustrates creating the new SFC project.

After creating the new SFC project, the next step is to create an LD program named "SelMode"
as illustrated below.

When you click on the "OK" button the "ISaGRAF Quick LD Program" window will open. Add
the instructions as shown in the example below.

IMPORTANT NOTE:
The example SFC program uses a function block that has not been used throughout the
manual. We will be adding the "1 Gain" function block to our LD program.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 100

Even though the "EN" (input) and "ENO" (output) arguments are not shown in the above
example, they will be added when you place the "1 Gain" function block in the program.

You will need to change the "K1" and "K2" contacts type to "P". The "P" contact (Positive)
enables a Boolean operation between a connection line state and the rising edge of a Boolean
variable. Place the cursor to the right of the "Q" and click once, then type in "Mode" for both
lines of logic. Place the cursor to the left of the "IN" on the top "1 Gain" function block, click
once and enter a "1". Do the same for the second LD line and enter a value of "2", then click
once on the "Q" and enter in "Mode".

When you are finished editing the "ISaGRAF Quick LD Program" window it should look like the
below example.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 101

The next step is to create a new SFC program called "Main".

The next step is to create a "CHILD" program called "Mode1".

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 102

Follow the same procedure to create a second "CHILD" program named "Mode2". When you
are completed the "ISaGRAF Programs" window should look as follows.

 2.5.2: Editing The SFC Program
To begin editing the example SFC program double click on "Main" in the sequential portion of
the "ISaGRAF Programs" window and the "ISaGRAF SFC Program" window will appear.

You will note an additional box to the right of the initial step box. This box will contain the code
for each of the steps and transitions in the example SFC program. The "code box" is not
required during the initial programming so you can to get rid of it temporarily by clicking on the
black dot in the gray box area below the initial step and resize the window to approximately the
size of the initial step box.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 103

The gray box will move down automatically when you click on the "OR Divergence" icon. The
next step is to click on the "Transition" icon to create "Transition 1" and then the "Step" icon to
create "Step 2 as shown below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 104

With the gray box below "Step 2" click on the transition button to add a second transition
(transition #2) to the example SFC program. After adding the second transition below "Step 2",
click directly below the "OR Divergence" so that the gray box is now placed there. Click on the
transition icon again with the gray box below the "OR Divergence" to add a third transition
(transition #3).

When you have completed these tasks your SFC program should now look like the third SFC
picture below.

From where the gray box is currently click on the "Step" icon to add Step #3, and then with the
gray box below the newly created step #3 click on the transition icon to add a fourth transition
(transition #4) to the example SFC program. Your SFC program should now look like the below
example.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 105

Now click the gray box below transition #2 and click on the "OR Convergence" (F7) icon.

Now click on the "Jump To Step" (F5) icon, this will open the "Jump Destination" window.
Double click on the "GS1" label in the "Jump Destination" window.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 106

We have now finished programming the "Main" portion of the example SFC program. The next
detail is to add the code for each of the steps and transitions. Double click on step #1 (initial
step) and the "ISaGRAF SFC Program" window will open. Type the displayed text into the area
shown below. This will associate the typed in code with the step #1. REMEMBER to type a
semi-colon (":") at the end of each line of code.

Using the same method as described above, double click on each transition and step and add
the code for each item as shown below.

OUT1(R);
OUT2(R);

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 107

CONGRATULATIONS! You have now successfully programmed the "Main" section of the
example SFC program (and the most time consuming).

The last portion of creating the example SFC program requires the creation and editing of the
two "CHILD" programs. You program the "CHILD" programs using the exact same method as
required for creating the "MAIN" program. When you are finished creating and editing the
"CHILD" programs your two windows should look like the examples below.

 SFC Child Program "Mode1" SFC Child Program "Mode2"

Final Details
Remember that you must follow the same procedure for "Connecting I/O’s" and "Compiling The
Project" as detailed in Section 2.1.2 and Section 2.1.3.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 108

2.5.3: Simulating The SFC Program
After you have successfully compiled the SFC program, you can now run the example SFC
program in "Simulate" mode to observe how the two "CHILD" programs work within the "MAIN"
SFC program. When "K1" is on, "Mode1" is true and both "OUT1" and "OUT2 turn on and off
together, and "Mode2" is false.

When "K2" is on "Mode2" is true "OUT1" will turn on while "OUT2" is off and then they will
alternate where "OUT2" will turn on and "OUT1" will be off, and "Mode1" is false.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 109

Chapter 3: Establishing I/O Connections
Before you can operate an ISaGRAF program with the I-8xx7, I-7188EG/XG & Wincon-8xx7
controller, you must make sure that the I/O Library has been installed. If you haven’t done so
already, install it as outlined in Section 1.2 "Installing The ICP DAS Utilities For ISaGRAF".

3.1: Linking I/O Boards To An ISaGRAF Project
To begin connecting I/O boards to an ISaGRAF project you must first link the I/O boards to the
ISaGRAF program. The numbers on the left of the "I/O Connections" window indicate the slot
number. Slots 0 through 7 are used ONLY for real I-8000 series I/O boards(Slot 1 through 7
for W-8xx7). Slots 8 and above can be used for "virtual" I/O boards such as the "Push4Key"
and "Show3Led" functions fot I-8xx7. For I-7188EG/XG, slot 0 is for Xxxx serial I/O boards, slot
1 & above are for others.

In this example I/O connection we are using the I-8417 controller system that has the following
boards installed:

Slot 0: I-8055 Board (8 digital inputs & 8 digital outputs)
Slot 1: I-87055 Board (8 serial inputs & 8 serial outputs)
Slot 2: I-87017 Board (8 channel analog input)
Slot 3: I-87024 Board (4 channel analog output)
Slot 8: "Push4Key"
Slot 9: "Show3Led"

A powerful feature of the I-8xx7 controller system is that you can intersperse "real" I/O boards
with "virtual" I/O boards.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 110

3.1.1: Linking I/O Boards
With the "I/O Connection" window open double click on the slot that you want to connect an I/O
board to. The "Select Board/Equipment" window will open, scroll to the name of the I/O board
that you want to associate with the particular slot.

The ISaGRAF controller library defines two basic types of real I/O boards, "Boards" and
"Equipments". The "Boards" selection is for I/O boards that are "single type", meaning that all
of the channels on that board are of a single type and attribute. The "Equipments" selection is
for I/O boards that are "multi-type", which means boards that have multiple types (such as the
I-8055 digital I/O board that has 8 digital inputs and 8 digital outputs all on the same board). To
begin the linking I/O board process, double click on the slot that you want to associate an I/O
board to.

If you link an I/O board to an incorrect slot, first click on the slot number you wish to correct,
then just click on the "Clear Slot" icon to delete the connection. The connection is now cleared,
and now you can make a connection to the desired slot location.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 111

3.1.2: Linking Input & Output Board Variables
All of the input and output board "variables (or names)" must be linked (connected) in the "I/O
Connection" window. Click on the slot you wish to link the attribute to, then double click on the
channel (or I/O point name) number on the right hand portion of the "I/O Connection" window.
Lastly, choose the variable name you wish to link to and then click on the "Connect" button.

IMPORTANT NOTE
Remember that before you can assign any input or output, you must FIRST declare the
variable in the "ISaGRAF Global Variables" window as shown below.

Click once on slot 8, then double click on "1" on the right hand side of the "ISaGRAF I/O
Connection" window. With the "Connect I/O Channel #1" window now open, click on the
"Connect" button to create the link between the variable "K1" and channel number 1 of the
"Push4Key" input.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 112

If you connect an input or an output variable to the wrong (or undesired) I/O location, double
click on the I/O point you wish to remove. The "Connect I/O Channel #x" will open then click on
the "Free" button to remove that variable from the I/O point.

When you click on the "Free" button you will see that the variable is removed from the I/O point
in the "ISaGRAF I/O Connection" window and the variable is placed in the "Free" portion of the
"Connect I/O Channel #x" window.

Click on here to see
the on-line help.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 113

3.2: Linking Analog Type I/O Boards
The method to connect analog type I/O boards to the controller system is very similar to that of
connecting digital I/O boards. First, variables which are connected to analog type I/O boards
should be declared as “Interger” format.

The ONE main difference is that you MUST define one parameter that defines the range for the
analog board so it will operate as expected.

Click on here to
see the on-line
help.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 114

To modify the analog board "Range" parameter, click on the word "Range" in the "ISaGRAF I/O
Connection" window and the "I/O Board Parameter" window will open. Enter in the correct
"Range" parameter for your particular analog board application.

The below table provides information on several of the possible options for the "Range"
parameter. Note that the default value is set to "8", which means you can interface to a –10v to
+10v signal with a range value of –32768 to 32767. Changing the value of "Range" parameter
to "9" means you can interface to a –5v to +5v signal with a range value of –32768 to 32767.

Note that if you set the "Range" parameter to "A" you will be interface to a –1v to +1v signal with
a range value of –32768 to 32767. This range value can be very helpful in analog applications
that require a great deal of resolution over a very small range (typically temperature) control.

Please refer to Appendix D - “Table of The Analog IO Value” for more information for
several different types of analog boards and their respective ranges.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 115

3.3: Linking "Push4Key" & "Show3Led"
The I-8xx7 controllers have an additional feature that is useful for program testing and
debugging. These features are the "Push4Key" and "Show3Led" on the front panel on the I-
8xx7 controller system.

Note:
I-7188EG/XG & Wincon-8037/8337/8737 doesn’t support “Pusg4Key” & “Show3Led”

The "Push4Key" are the four pushbuttons on the I-8xx7 control front panel and they are
handled as digital inputs. The "Show3Led" are three of the four LED’s on the I-8xx7 control
front panel (the first three from left to right, the fourth LED is strictly to show if the power is
turned on the I-8xx7 controller system) and they are handled as digital outputs.

Both of these can be linked to an ISaGRAF program through the "I/O Connection" window and
can be used to interface with Man Machine Interface (MMI) programs or for program debugging.
It is recommended that you assign these functions to slot 8 or higher (remember, slots 0
through 7 are reserved for real I/O boards.

IMPORTANT NOTE:
As with any real digital input or real digital output, you MUST declare a variable name for each
of the "Push4Button" inputs and "Show3Led" outputs in the "ISaGRAF Global Variables"
window BEFORE they can be assigned to an ISaGRAF program.

Use

3.4: Directly Represented Variables
If you have an ISaGRAF-256 or ISaGRAF-L workbench (Version 3.4x or 3.5x) with a dongle,
you don’t need to use the skill described in this section.

A very useful feature of the ISaGRAF Workbench program is the ability to create "directly
represented (or internal)" variables. Internal variables are program variables that can be used
in an ISaGRAF program, but they are not physically connected to any of the input or output
variables. There are four versions of the ISaGRAF Workbench program available with the I-
8xx7 controller system: ISaGRAF-32, ISaGRAF-80, ISaGRAF-256, and ISaGRAF-L. The
number after "ISaGRAF" represents the number of I/O variables that are allowed with that
particular ISaGRAF Workbench program.

The ISaGRAF Workbench program comes with a hardware protection device (dongle) that
plugs directly into your development computers parallel port. Every time you compile a
program in ISaGRAF the hardware protection device is read to make sure that you are not
trying to connect to more program variables than are allowed with your particular copy of the
ISaGRAF Workbench program that you purchased with your I-8xx7 controller system.

These "directly represented (henceforth called "internal") variables can be used in lieu of your
real world inputs and outputs so you can create additional program variables that do not count
against the amount of ISaGRAF program variables. The only "caveat emptor" to these internal
variables is that you must follow a strict programming scheme to program and access these
internal variables, and they are more complicated to create than the regular input and output
variables. For a professional programmer, recommend to purchase an ISaGRAF-256
workbench rather than an ISaGRAF-80 or ISaGRAF-32 workbench for programming on
I-8xx7, I-7188EG/XG & Wincon-8xx7 controllers.

Single Type Internal Variable Programming Scheme:

Com
For single-typed board: "s" is the slot No, "c" is the channel No.
%IXs.c free channel of a boolean input board, ex. %IX2.3
%QXs.c free channel of a boolean output board, ex. %QX0.2
%IDs.c free channel of an integer input board, ex. %ID3.1
%QDs.c free channel of an integer output board, ex. %QD2.4
%ISs.c free channel of a message input board, ex. %IS3.1
%QSs.c free channel of a message output board, ex. %QS2.4
plex Type Internal Variable Programming Scheme:
For complex board: "s" is the slot No, "b" is the index of the single board within the
complex equipment. "c" is the channel No.
%IXs.b.c free channel of a boolean input board, ex. %IX2.3.2
%QXs.b.c free channel of a boolean output board, ex. %QX0.2.1
%IDs.b.c free channel of an integer input board, ex. %ID3.1.3
%QDs.b.c free channel of an integer output board, ex. %QD2.4.3
%ISs.b.c free channel of a message input board, ex. %IS3.3.1
%QSs.b.c free channel of a message output board, ex. %QS2.1.4
r’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 116

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 117

An Internal Variable Program Example
Create a new project for an ISaGRAF ST program, and then create a link to the I/O boards that
are specified in the window below. Declare three input variables called "D1", "D2", & "D3" for
the I-8051 board located at slot 0, and then create three output variables called "OUT1",
"OUT2", & OUT3" for an I-8056 board located at slot 1. This time set each of their respective
attributes to "internal" instead of input or output (this means they are not connected to any real
physical I/O).

Create A New "ST" Program

Double click on the "ST_Inter" that is highlighted and the "ISaGRAF ST Program" window will
open. Type in the program code displayed in the window below EXACTLY as shown.
Remember, each line MUST end with a semi-colon (";").

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 118

Now we can use the internal variables D1 through D3 and OUT1 through OUT3 that have been
created in other programs in the same project. The newly created internal variables will
generate input and output actions to the associated channels in this ST program.

IMPORTANT NOTE:
If once the input or output attributed variables have been connected to an connected IO board
or complex equipment, and if they would like to be replaced by Directly represented variables,
these input or output attributed variables have to be re-attributed to “internal” and the board or
equipment must be re-connected to the slot.

IMPORTANT NOTE
If you enable the compiler option of upload, option “Comments for not connected I/O
channels” must be choosed if “Directly represented variables” is used in this project (refer to
section 9.2).

D1 := %IX0.1 ;
D2 := %IX0.2 ;
D3 := %IX0.3 ;

%QX1.1 := OUT1 ;
%QX1.2 := OUT2 ;
%QX1.3 := OUT3 ;

Clear slot and re-connect again.

If you wish to replaced
these variables by
directly represented
variables, re-attributed
them to “internal”
attribution in the
“dictionary” window.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 119

3.5: D/I Counters Built in The I-87xxx D/I Modules
87051, 87052, 87053, 87054, 87055, 87058 & 87063 have built-in low speed D/I counters
associated with each D/I channel. The max counter speed of these modules is 100Hz. The
counter value is ranging from 0 to 65535 and can be reset to 0.

To use these D/I counters, connect these I/O modules with a last character – “C”. For ex.
“i_87052C” .

Click on here
to see the on-
line help

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 120

If the I-87xxx D/I Module is plugged in the 87K4, 87K5, 87K8 & 87K9 extension base module, or
the I-7000 D/I module is used, Please refer to Chapter 6 to use “7000 utility” to set the
appropriate address, baud rate , then connect “Bus7000” on the ”I/O connection” window.

Then using “I_DiCnt” block to get the “D/I Counter” value. Each “I_DiCnt” can get 4 counters.

Address of
the D/I
module

Starting from
which channel

The Counter value
(Integer) returned

If the boolean value rising from FALSE to TRUE,
reset the associated counter value to 0

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 121

3.6: Auto-Scan I/O
Before you can use Auto-scan I/O utility, make sure the “ICP DAS Utilities For ISaGRAF” has
been installed. (please refer to section 1.2)

What is Auto-scan I/O :
It’s a tool for ISaGRAF to easily configure your I/O connection and automatically declare
variables for each I/O channel.

How to use ?
A. Open your ISaGRAF program.
B. Click on “Tools/ICP DAS/Auto-scan I/O” to run Auto-scan.

C. The Auto-scan I/O is divided into three area.

Original I/O Connection shows the modules that already exist in your I/O connection at
the first eight slots of your ISaGRAF project.
Current Found I/O Modules shows the I/O modules that detected in your controller (By
RS232 or TCP/IP).
Auto-Declare Variables shows what modules that you want Auto-scan to automatically
declare variables for you also.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 122

D. In the “Current Found I/O Modules.” area:

The check box will be enable only when an I/O module is detected in the controller and
the slot is not used by original I/O connection.

E. In the “Auto-Declare Variables”:
The check box can be enable only when one I/O module is checked in the current found
area.

F. You can check the “Select All” to check all available boxes in the respective area.

What is necessary for Auto-scan I/O ?

A. Make sure the “Link setup” parameter is correct.

B. Plug in I/O boards first before your ISaGRAF can detect them.

Naming rules of automatically declared variables

Name format : Type_Slot_Channel

Type:
 Digital Input : DI
 Digital Output : DO
 Analog Input : AI
 Analog Output : AO

Slot : one digital slot number.
Channel : two digital channel number.

For ex. :
DI_0_02 , Digital Input channel at channel No.2 of slot 0.
AI_5_06 , Analog Input channel at channel No.6 of slot 5.
DO_2_12, Digital Output channel at channel No.12 of slot 2.
AO_1_03, Analog Output channel No. 3 of slot 1.

Note:
I-8xx7 & Wincon-8xx7 supports “Auto-Scan”, however I-7188EG/XG doesn’t supoort it.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 123

3.7: PWM Output
The scan time of the ISaGRAF controller depends on the ISaGRAF program and the hardware
driver. For normal usage, the scan time is about 5 to 40 ms. It may go up to 100 ms sometime
when the user’s ISaGRAF program is very complicated. It is not easy to generate a precise
periodic pulse output because the scan time of ISaGRAF is always varying, for example, a
square curve of 2 ms OFF & then 1 ms ON. To achieve this kind of application, ISaGRAF
provide PWM output functions.

To use PWM output (Pulse Width Modulation) in I-8417/8817/8437/8837, please update the
driver to version of 2.43 or higher. Only parallel Output boards are supported, not for serial
boards. The following output boards are available with the PWM function.
 I-8037, 8041, 8042, 8054, 8055, 8056, 8057, 8060, 8063, 8064, 8065, 8066, 8068, 8069

To support PWM function in I-7188EG, please update the driver to version of 1.35 or higher,
while 1.32 or higer for I-7188XG
Only the Xxxx boards with digital output channels are available with PWM function.

Note:
1. Max 8 digital outputs can call PWM_en, PWM_en2, pwm_ON & pwm_OFF at the same time.
2. I-7188EG/XG must connect the Xxxx board at slot 0, or the PWM function will not work.

The below functions are for PWM output.

PWM_dis Disable PWM output

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.

Return:
Q_ boolean TRUE: Ok .

FALSE: wrong input parameters, too many PWM outputs been
enable, or the associate output channel is not found.

Note:
1. After calling PWM_dis, the associate output will then be controlled by the ISaGRAF cycle
engine.
2.Max 8 output channels can call PWM_en, PWM_en2, pwm_ON, pwm_OFF at one controller.

Example: demo_50

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 124

PWM_en Enable PWM to output until PWM_dis is called

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.
OFF_ integer Off time, 0 ~ 32,767, unit is ms. If set as 0, it

means OFF_ time is 1 ms.
ON_ integer On time, 0 ~ 32,767, unit is ms. If set as 0, it

means ON_ time is 1 ms.
Return:

Q_ boolean TRUE: Ok .
FALSE: wrong input parameters, too many PWM outputs been
enable, or the associate output channel is not found.

Example: demo_50

PWM_en2 Enable PWM to output a given number of pulse

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.
OFF_ integer Off time, 0 ~ 32,767, unit is ms. If set as 0, it

means OFF_ time is 1 ms.
ON_ integer On time, 0 ~ 32,767, unit is ms. If set as 0, it

means ON_ time is 1 ms.
NUM_ integer number of pulse to output, 1 - 2,147,483,647

Return:
Q_ boolean TRUE: Ok .

FALSE: wrong input parameters, too many PWM outputs been
enable, or the associate output channel is not found.

Example: demo_55

PWM output curve:

Note:
1. Every time the PWM_en or PWM_en2 is called, it will reset its internal tick to 0, and re-start
ticking to OFF, ON, OFF, ON, ...
2. If the given number of pulse of pwm_en2 is reached, it will stop & disable PWM auomatically

(Calling PWM_dis for pwm_en2 is not necessary).
3. PWM_sts can be used to test if pwm_en2 reaches its given number of pulse or not.
4. Max 8 output channels can call PWM_en, PWM_en2, pwm_ON, pwm_OFF at one controller.
5. Do not enable the channel that is already enable. Please disable it first.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 125

pwm_ON Set parallel D/O to TRUE immediately

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.

Return:
Q_ boolean TRUE: Ok .

FALSE: wrong input parameters, too many PWM outputs been
enable, or the associate output channel is not found.

Example: demo_55

pwm_OFF Set parallel D/O to FALSE immediately

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.

Return:
Q_ boolean TRUE: Ok .

FALSE: wrong input parameters, too many PWM outputs been
enable, or the associate output channel is not found.

Example: demo_55

Note:
1. Max 8 output channels can call PWM_en, PWM_en2, pwm_ON, pwm_OFF at one controller.
2. pwm_ON will set the associate parallel D/O to TRUE immediately.
3. pwm_OFF will set the associate parallel D/O to FALSE immediately.
4. If users wish to enable one D/O as PWM output by PWM_en or PWM_en2 after pwm_ON &

pwm_OFF has been called, please disable it first by PWM_dis, then call PWM_en or
PWM_en2.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 126

PWM_sts Get PWM status

Parameters:
SLOT_ integer Which slot ? 0 ~ 7 for I-8xx7, only 0 for I-

7188EG/XG.
CH_ integer Which channel ? 1 ~ 32.

Return:
Q_ boolean TRUE: this channel has been enable

FALSE: disable (for pwm_en2 been called, it means the given
pulse number is reached).

Note:
1. Max 8 output channels can call PWM_en, PWM_en2, pwm_ON, pwm_OFF at one controller.
2. This function can be used to test if "PWM_en2" reachs its given pulse number or not.

Example: demo_55

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 127

3.8: Counters Built in Parallel D/I Boards
I-8417/8817/8437/8837 supports D/I counters since its driver version of 2.43. Only parallel
input boards plug at slot 0 are supported, not for serial boards. The following input boards are
available with D/I counters.
 I-8040, 8042, 8051, 8052, 8053, 8054, 8055, 8058, 8063, 8077

I-7188EG supports D/I counters since its driver version of 1.35 while I-7188XG since 1.32.
Only the X??? boards with digital input channels are available with D/I counters.

The max channel of parallel D/I counter available in one controller is up to 8. And the
max frequency of counter input is up to 500 Hz with minimum pulse width of 1 ms.

The below c function block is for getting/reset D/I counters at slot 0.

Parameters:
RS1_ ~ RS8_ boolean Reset the associated D/I counter when rising

from False to True

Return:
Q_ boolean work ok. : TRUE. If Q_ is FALSE , it means “No

parallel D/I module found at slot 0 "
CN1_ ~ CN8_ integer DI Counter value of channel No. 1 to 8. Valid

value is ranging from 0 to 2,147,483,647. If value
is over 2,147,483,647, it restarts at 0.

Note:
Only Parallel D/I board plug in slot 0 support “Di_Cnt”, not for other slots.
Only the first 8 D/I channel support “Di_Cnt”.
I-7188EG/XG must connect the X??? board at slot 0, or the “Di_Cnt” will not work.

Demo: Please refer to I-8417/8817/8437/8837’s demo_52 & demo_53.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 128

3.10: Stepping Output Built in Parallel D/O Boards
I-8417/8817/8437/8837 supports D/O Stepping output since its driver version of 2.37. Only
below parallel output boards are supported, not for serial boards.

 I-8037, 8041, 8042, 8054, 8055, 8056, 8057, 8060, 8063, 8064, 8065, 8066, 8068, 8069

The max axis number of stepping output is 2 for one controller.
Each axis is drived by 4 digital output channels. Please connect them as below.

Axis 1: A --- Ch.1 B --- Ch.2 A_ --- Ch.3 B_ --- Ch.4

Axis 2: A --- Ch.5 B --- Ch.6 A_ --- Ch.7 B_ --- Ch.8

Note:
 Do not use stepping output & PWM output at the same output channel.
 The I-7188EG/XG & W-8xx7 doesn’t support stepping output.

Available functions:

STP_en Enable stepping output to output

Parameters:
SLOT_ integer Which slot ? 0 - 7
AXIS_ Integer Which axis ? 1 - 2

AXIS 1: (Ch.1 - Ch.4), AXIS 2: (Ch.5 - Ch.8)
MODE_ Integer Which mode ? 1 – 3, (A, B, A_, B_) =

 Mode 1: (1, 0, 0, 0)--> (0, 1, 0, 0)--> (0, 0, 1, 0)--> (0, 0, 0, 1)
 Mode 2: (1, 1, 0, 0)--> (0, 1, 1, 0)--> (0, 0, 1, 1)--> (1, 0, 0, 1)
 Mode 3: (1, 0, 0, 0)--> (1, 1, 0, 0)--> (0, 1, 0, 0)--> (0, 1, 1, 0) -->
 (0, 0, 1, 0) --> (0, 0, 1, 1) --> (0, 0, 0, 1) --> (1, 0, 0, 1)

MS_ Integer Step interval time, 1 - 1000, unit is ms.
For ex. set as 5 means running 200 steps/sec.

DIR_ Boolean True: positive direction, False: opposite direction
return:

Q_ Boolean TRUE: Ok , FALSE: wrong input parameters,
 or the associate output channel is not found.

Example: Please refer to I-8417/8817/8437/8837’s demo_58 & demo_59.

Note:
1. The way to stop "STP_en" is - call "STP_dis" function
2. If “STP_en”, “STP_en2”, “STP_sts” & “STP_dis” is not found, please download “ICP DAS
Utilities For ISaGRAF.zip” from http://www.icpdas.com/products/8000/isagraf.htm
and click on setup to re-install them to your ISaGRAF.

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 129

STP_en2 Enable stepping output to output some given steps

Parameters:
SLOT_ integer Which slot ? 0 - 7
AXIS_ Integer Which axis ? 1 - 2

AXIS 1: (Ch.1 - Ch.4), AXIS 2: (Ch.5 - Ch.8)
MODE_ Integer Which mode ? 1 – 3, (A, B, A_, B_) =

 Mode 1: (1, 0, 0, 0)--> (0, 1, 0, 0)--> (0, 0, 1, 0)--> (0, 0, 0, 1)
 Mode 2: (1, 1, 0, 0)--> (0, 1, 1, 0)--> (0, 0, 1, 1)--> (1, 0, 0, 1)

 Mode 3: (1, 0, 0, 0)--> (1, 1, 0, 0)--> (0, 1, 0, 0)--> (0, 1, 1, 0)-->
 (0, 0, 1, 0) --> (0, 0, 1, 1) --> (0, 0, 0, 1) --> (1, 0, 0, 1)

MS_ Integer Step interval time, 1 - 1000, unit is ms.
For ex. set as 5 means running 200 steps/sec.

NUM_ Integer How many steps ? 0 - 2,147,483,647
DIR_ Boolean True: positive direction, False: opposite direction

return:
Q_ Boolean TRUE: Ok , FALSE: wrong input parameters,

 or the associate output channel is not found.

Note:
User may use the "STP_sts" function to test “STP_en2” is finished or not.
2. The ways to stop "STP_en2" are

- call "STP_dis" function
- wait until it is finished

STP_sts Get stepping output status

Parameters:
 AXIS_ Integer Which axis ? 1 - 2

AXIS 1: (Ch.1 - Ch.4), AXIS 2: (Ch.5 - Ch.8)
return:

Q_ Boolean TRUE: still enable , FALSE: disable (for stp_en2 been
called, it means the given step number is reached).

STP_dis Disable stepping output

Parameters:
 AXIS_ Integer Which axis ? 1 - 2

AXIS 1: (Ch.1 - Ch.4), AXIS 2: (Ch.5 - Ch.8)
return:

Q_ Boolean TRUE: Ok , FALSE: wrong input parameters,
 or the associate output channel is not found.

Example: Please refer to I-8417/8817/8437/8837’s demo_58 & demo_59.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 130

Chapter 4: Linking Controllers To An HMI Program
This chapter details how to make data from the I-8xx7, I-7188EG/XG & W-8xx7 controller
system available to Human Machine Interface (HMI) programs. This is a powerful feature that
allows customers to create their own custom HMI programs and link them to the controller
system.

After you realize the material described in section 4.1, if you would like to use the I-8xx7, I-
7188EG/XG controller as a Modbus or Modbus TCP/IP I/O, you may refer to section 4.3.
Additionally there are "touch screen" monitors provided by ICP DAS that support the "Modbus"
protocol, and these touch screen monitors can also access data from an I-8xx7 controller .
Section 4.4 illustrates how to link a "Touch 510" monitor to an I-8xx7 controller system.

4.1: Declaring Variable Addresses For Network Access
To make data from an I-8xx7, I-7188EG/XG & W-8xx7 controller system available to other
software programs or HMI devices, you must first declare the variable with a "Network
Address". The variable must be declared with a network address number that is in the
"Modbus" format. Other software programs or HMI devices will access the controller
information through these network addresses.

There are two methods available to declare a variable for network address access. The first
method is described below. Open an "ISaGRAF Programs" windows and click on the
"Dictionary" icon, then double click on the variable to assign a network address number.

Note:
1. The valid network addresses for an I-8417/8817/8437/8837 & I-7188EG/XG controller
system is from 1 to FFF in hexadecimal (1 ~ 4095). Network address 5001 to 8072 is for word
and integer arrays, please refer to Section 4.5.

2. The valid network addresses for an W-8037/8337/8737 controller system is from 1 to 1FFF in
hexadecimal (1 ~ 8191). Network address 10,001 to 19,216 is for word and integer arrays,
please refer to Section 4.5.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 131

When you click on the "Store" button you will see that "ISaGRAF Global Variables" window will
now be updated with the new network address for the variable.

The second method for assigning network addresses to variables requires that you declare the
variables BEFORE you assign them. This method allows you to assign numerous network
address variables before you link them to an ISaGRAF program.

Note:
The value displayed
here is always in
hexadecimal.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 132

When you click on "Modbus SCADA Addressing Map" (SCADA is an industrial process control
acronym that stands for "Supervisory Control And Data Acquisition") the "Modbus SCADA
Addressing Map" window will open.

Note that one of the variables (D1) is already assigned from our previous network-addressing
example. You will note that the other variables that are not yet mapped are displayed in the
lower portion under the "Variables (Not Mapped)" portion of the "Modbus SCADA Addressing
Map" window.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 133

To assign the other variable address click on an unassigned "Map Segment" number, and then
double click on the variable you want to assign to the address and the variable will
automatically assign itself to the "Map Segment".

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 134

For human’s thinking method, network address represented in hexadecimal format is
inconvenient and it increases the chance to make mistake. Therefore, it’s better to change it to
be represented in decimal format. To do that is as following.

IMPORTANT NOTE REGARDING MODBUS NETWORK ADDRESSING
The Modbus network address definition scheme is sometimes different between HMI devices
and other software programs. The difference is typically that the other programs may assign a
network address number that is one (1) less than that of the I-8xx7, I-7188EG/X & W-8xx7
controller system.

HMI or devices such as Iconics, Citech, Wizcon, Kepware’s OPC server, Intellution’s "iFix",
Wonderware’s "Intouch", National Instruments "Labview", and ICP DAS’s Touch 506L, Touch
506S and Touch 510T do have the exact same addressing scheme as the I-8xx7, I-7188EG/X
& W-8xx7 controller system.

Known addressing disparities include "LabLink" and "Hitech" HMI software programs and
devices. If you are assigning a network address of "B" (hexadecimal) of these products the I-
8xx7 network address should be set to "C". A network address of "2" should be associated with
a network address of "3" in the ISaGRAF controller system.

Another things mistaked very often is the first digit of the network address of many HMI
softwares resprent the data type and Read/Write authority not one part of the network address.
For example, the network address relation between “iFix” and ISaGRAF is as below.

 iFix(Decimal) I-8xx7 (Decimal)
00001 (R/W Boolean) 1

… …
10010 (Read Boolean) 10

… …
31000(Read Word) 1000

… …
42101(R/W Word) 2101

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 135

ICP DAS has not been able to test every possible HMI software program or hardware device
that has Modbus addressing capability. If you are trying to connect your HMI software program
or hardware device with Modbus to an I-8xx7, I-7188EG/X & W-8xx7 controller system,
REMEMBER that you may have to offset the Modus addressing by 1 between these products
so they will properly communicate with each other.

Developers who design and write their own software interface programs using Microsoft’s
Visual Basic or Visual C++ programming language should refer to Chapter 5 of this manual for
more information on how to interface the Modbus protocol to these programming languages.

NOTE:
While talking to the I-8xx7, I-7188EG/X & W-8xx7, ONE Modbus frame cannot request more
than 255 bits, and also cannot request more than 120 words. It should be divided into 2 or
more requests to achieve it.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 136

4.2:Read/Write Word, Long Word & Float through Modbus
Modbus protocol provides function 3 for reading multiple words while function 6 and 16 to write
words. Please refer to Chapter 5 for more information about the protocol.

The word defined in the Modbus protocol of I-8xx7, I-7188EG/X & W-8xx7 controllers is like a
signed short integer, which occupies 2 bytes and range from –32,768 (8000 in hexa.) to
+32,767 (7FFF in hexa.). It is normally used to describe the behavior of analog I/O channels.
For examples, the I-87017 I/O board (please refer to section 3.2)

I-87017 :

Values on the channel (decimal)Range ID
(hexadecimal)

Electrical
Range -32768 0 +32767

8 (default) ± 10V - 10V 0V + 10V
9 ± 5V - 5V 0V + 5V
A ± 1V - 1V 0V + 1V
B ± 500mV - 500mV 0mV + 500mV
C ± 150mV - 150mV 0mV + 150mV
D ± 20mA - 20mA 0mA + 20mA

The long word defined in the Modbus protocol of I-8xx7, I-7188EG/X & W-8xx7 controllers is
like a signed long integer, which occupies 4 bytes and range from -2,147,483,648 (8000 0000
in hexa.) to +2,147,483,647 (7FFF FFFF in hexa.). It is normally used to describe the value of
internal integer variables declared on ISaGRAF workbench.

All integer variables declared on ISaGRAF are signed 32-bit format however the integer
variable, which assigned with a network address will only, occupies 1 word (2 bytes) in the
Mudbus transportation format. Since a long word occupies 2 words (4 bytes), to Read/Write
long word through Modbus, the network address assigned to the integer variable has to be
followed as below.

V1 is assigned to a network address
“1”.
If the network address “2” is not
assigned to any other variable, V1
will occupy a long word (4 bytes) in
the Modbus transportation formate.

However if “2” is assigned to one
another variable, V1 will only occupy
one word (2 bytes) in the Modbus
transportation format.

In this example, V1, V2, V3, V6, V7
and V8 will occupy 4 bytes however
V4 and V5 only occupy 1 word
(Lowest word) in the Modbus

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 137

To read long word value of V1 is to read 2 words by using modbus function 3 (please refer to
section 5.1).

Req: Slv 03 00 00 00 02 crcH crcL

Ans: Slv 03 04 vH vL vH vL crcH crcL

To write long word to V1 is to write 2 words by using modbus function 16.

Req: slv 10 00 00 00 02 04 vH vL vH vL crcH crcL

Ans: slv 10 00 00 00 02 crcH crcL

To read / write float (4 bytes) is very similar to read / write long word. The difference is the
variable should be declared as “Real” type, and the next network address No. should not be
assigned to any other variable.

There are much available HMI software on the market. You don’t need to care about the
modbus protocol format. Just be careful to assign the correct network address on ISaGRAF.

Lowest
word

Highest
word

Read 2 words

Lowest word
Highest word

Modbus address 0000 is associate with network address 1 of the variable

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 138

4.3: Using I-8xx7 As A Modbus I/O Or A Modbus TCP/IP I/O
There are some configurations that the HMI software gathers the I/O data from some called
Modbus I/O modules. There I/O modules scan each input channels and refresh the output
channels when need. Most of time there are no control logic inside these I/O modules, they are
controlled by the HMI. To fit such kind of usage, the I-8417/8817/8437/8837 can be a Modbus
I/O module, additionally the I-8437/8837 can be a Modbus TCP/IP I/O module. To do that,
follow the following procedures (If you are not familiar with the ISaGRAF programming,
recommended to review Chapter 2).

Create a new project
You may refer to section 2.1.1.2
Example:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 139

Create an empty program
No logic need.
Example:

Connect I/O modules
You may refer to section 3.1
Example:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 140

Declare Variables associated with the channels of connected I/O modules.
You may refer to section 2.1.1.3
Example:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 141

Link Variables to the associated channels of connected I/O modules.
You may refer to section 3.1.2
Example:

Assign the linked Variable a network address No.
You may refer to section 4.1
Example:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 142

Compile & download the project
You may refer to section 2.1.3 & 2.1.5

Note:
Make sure the Net ID is set to the proper No. (section 1.3.1) For I-8437/8837, make sure the IP
and Mask address is well set (appendix B).

The HMI can access to I/O channels through the associated network address now!

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 143

4.4: Linking I-8xx7, I-7188EG/XG & W-8xx7 To Touch 500
This section illustrates a demo program to link the I-8417 controller to a Touch 510T HMI.

Software Installation: EasyBuilder 500

Please download its newly toolkit & Manual at
http://www.icpdas.com/download/others/touch/touch.htm “setup.zip”

or run CD-ROM:\napdos\others\touch\500series\setup \“setup.exe” (V2.52 or later)

Note: Please always install it to “c:\EB500” (the default path)

The cable to link PC to the Touch 506L/506S/510T has pin assignment as following. It can be
used to download the designed MMI picture from the PC to the 506L/506S/510T.

After the Touch 510T has been programmed a MMI picture, another cable should be used to
link the Touch 510T to the I-8xx7, I-7188EG/XG & W-8xx7 controller.

Cable Pin Assignment:

 I-8000 COM1 & I-7188 COM1 (RS232) Touch 506S/506L/510T (PLC 232)

 9-Pin Dsub Male 9-Pin Dsub Male
2 TXD 2 TXD

 3 RXD 3 RXD
5 GND 5 GND

 7 CTS
 8 RTS

 Wincon COM2 (RS232) Touch 506S/506L/510T (PLC 232)

 9-Pin Dsub Female 9-Pin Dsub Male
2 RXD 2 TXD
3 TXD 3 RXD
5 GND 5 GND

 7 CTS
 8 RTS

PC 9-Pin (RS232)
TXD 2
RXD 3
GND 5

T510T (PC-232)
8 TXD
7 RXD
5 GND

T510T
T506L / 506SPC

http://www.icpdas.com/download/others/touch/touch.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 144

4.4.1: Program the I-8xx7, I-7188EG/XG & W-8xx7
To make data of the I-8xx7, I-7188EG/XG & W-8xx7 controller to be accessible to the Touch
510T, variables in the controller should be assigned a network address. Please refer to section
4.1, 4.2. If you are not familiar with the ISaGRAF programming, recommended to review
Chapter 2.

Variables used in this example.
Name Type Attribute Network address Others
OUT01 Boolean Output 0001 -
OUT02 Boolean Output 0002 -
VAL1 Integer Internal 000A (10) -

IO connection:

A simple LD program to show the “VAL1” to 7-segment LED:

After you finish this project, compile and download it to the I-8xx7 controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 145

4.4.2: Program the Touch 510T
The “EasyBuilder 500” software can be used to designe many useful pictures for Touch 500
series. This section illustrates a simple example to program a Touch 510T. For more
information about programming on the Touch series, please refer to the user manual which is
provided with the “Touch” series hardware.

Click on the Windows "Start" button, then click on the "Program" button, then click on the
"EasyBuilder" – “EasyBuilder 500” button. The following window will be displayed. Select the
proper model for your application.

Click “File” – “New” to create a new project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 146

Click “Edit” – “System Parameters” to set the communication parameter between the Touch
510 and the ISaGRAF controller.

PLC type should be set to “MODBUS RTU”, Serial port set to “RS232”, Data bits set to “8 Bits”,
Stop bits set to “1 Bit”, Baud rate set to “19200”, Parity set to “None”, PLC station No. set to be
equal to the Net-ID of the I-8xx7 (set to 1 in this example).

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 147

Click on “Text” to add a text. Select the prefered “Color”, “Font”, “Align” for the text and then
enter the “Content”. And then place it to the proper position.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 148

Click on “Function Key” to add a change-window button. Click on “General”, then select
“Change Window” and set “Window No.” to 11.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 149

Click on “Shape”, then select “Use shape” and the click on “Shape library …”

Select the prefered “Shape library” and then select one item and click on “OK”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 150

Click on “Label”, then select the prefered “Color”, “Font”, “Align” and set “Content” to “GOTO
S11”, and make sure “Use label” is selected.

Click on “Bit Lamp”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 151

Click on “General”, then select “Device type” to “0x” (0x is for boolean variables), then set
“Device address” to 1 (this value is associated with the network address value of the variable in
the I-8xx7). And then set “Function” to “Normal”.

By the same way as former, select prefered “Shap library”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 152

And then select “Label”, given a “OFF” to “Content” for “State : 0”. Make sure “Use label” is
choosed.

And then change “State” to 1, and given a “ON” to “Content”. Make sure “Use label” is
choosed.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 153

By the same way as former, create one another Bit Lamp with a “Device address” = 2.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 154

Click on “Toggle Switch”, then set all “Device Type” to “0x”, all “Device address” to 1 and select
“Switch Type ” to “Toggle”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 155

By the same way as former to choose a prefered “shape” and “label”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 156

By the same way as former, create one another “Toggle Switch” however set all “Device
address” to 2 and “Switch style” to “Momentary”. Click on “save” to save the project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 157

We are going to design another window. Click on “Windows” – “11”, then click and hold on the
right button of the mouse and drag to “Create”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 158

Double click on “Window_011”.

Create a change-window “Function Key” as former method to change to “Window No.” = 10,
and Labeled as “BACK”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 159

Click on “Set Word”, then set “Device Type” as “4x” (4x is for short integer, 4L is for long
integer), set “Device address” to 10, “BIN”, and “Set style” to “Set Constant”, and “Set value” =
100. And then select the prefered “shape”, and set “label” to “Set to 100”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 160

Click on “Numerical Data”, set “Device Type” to “4x” (4x is for short integer, 4L is for long
integer), “Device address” to 10, “BIN”, “Number of words” to 1, “No. above Dec” to 7, “No.
below Decimal” to 0, “Input low” to –32768, “Input high” to +32767. And then select the prefered
shape.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 161

Now we are going to add one another “Numerical Data” with conversion.
Click on “Numerical Data”, set “Device Type” to “4x” , “Device address” to 10, “BIN”, “Number of
words” to 1, “No. above Dec” to 5, “No. below Decimal” to 0, “Input low” to –32768, “Input high”
to +32767, check “Do conversion”, set “engineering low” to –10, “engineering high” to +10
(Convert [-32768,+32767] to [-10,+10]). And then select the prefered font.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 162

Click on “Numerical Input”, set “Device Type” to “4x”, “Device address” to 10, “BIN”, “Number of
words” to 1, “Trigger Device Type” to “LB”, “Trigger Device address” to “9000”, “No.
above Dec” to 7, “No. below Decimal” to 0, “Input low” to –32768, “Input high” to +32767. And
then select the prefered shape.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 163

Click “Tools” – “Compile …” to compile this project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 164

To download the project to the Touch 510, click on the Windows "Start" button, then click on the
"Program" button, then click on the "EasyBuilder" – “EasyManager” button. The following
window will be displayed. Choose the correct COM No. on your PC (Normally is COM1),
“115200 bps”.

Connect the RS232 download cable (refer to section 4.4) between PC and Touch 510.

Click on “Jump To RDS” first, if OK., you can see the screen of the Touch 510 will change and
wait for project download. Click on “Download” to start to download the MMI picture to the
Touch 510.

If downloading is OK, You may choose to click on “Jump To Application” or reset the Touch
510T , and then connect another RS232 cable between Touch 510 and the I-8xx7 (refer to
section 4.4).

Now, you may touch each icon on the Touch 510 to test. Have a good luck !

Touch
506L/506S
510T

RS232

COM1

Touch 510PC

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 165

4.5: Access To Word & Integer Array Via Modbus
User can use the below functions to read/write word & integer arrays inside the ISaGRAF
project. For more information about these functions, please refer to Appendix A.4.

ARY_N_R Read one integer(4 byte, signed) from an integer array
ARY_N_W Write one integer(4 byte, signed) to an integer array
ARY_W_R Read one word(2 byte, signed) from an word array
ARY_W_W Write one word(2 byte, signed) to an word array

Word and integer arrays built in the I-8xx7, I-7188EG, I-7188XG & Wincon-8xx7 controller
occupy the same memory area, please use them carefully. Other softwares (HMI, OPC
server, …) running on the PC can access to these word and integer arrays via Modbus
protocol. The valid network address for these arrays is from 5001 to 8072 for I-8xx7, I-
7188EG & I-7188XG, while 10,001 to 19,216 for the W-8xx7 and their relation is listed in
below table.

For the I-8xx7, I-7188EG, I-7188XG:
Network Address (Decimal) Word Array Integer Array

5001 (1,1) (1,1)
5002 (1,2)
5003 (1,3) (1,2)
5004 (1,4)

… … …
… …

8071 (12,255) (6,256)
8072 (12,256)

For the W-8xx7:
Network Address (Decimal) Word Array Integer Array

10001 (1,1) (1,1)
10002 (1,2)
10003 (1,3) (1,2)
10004 (1,4)

… … …
… …

19215 (36,255) (18,256)
19216 (36,256)

Note:
1. Network address 1 to 4095 for I-8xx7 & I-7188EG/XG, while 1 to 8191 for W-8xx7, can
be defined by users, please refer to Section 4.1.
2. Modbus address in the physical transmission format is equal to Network address minus
one (please refer to Chapter 5). So the valid Modbus address for word & integer arrays is from
5000 to 8071 for I-8xx7, I-7188EG/XG, and 10000 to 19215 for W-8xx7.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 166

Chapter 5: Modbus Protocol
The Modbus protocol is a powerful and flexible communications protocol that allows numerous
software programs and hardware devices to communicate with each other. Any I-8xx7, I-
7188EG/XG & W-8xx7 variable that will be used to communicate through the Modbus protocol
MUST have a unique network address before it can communicate through a Modbus link
(please refer to section 4.1).

5.1: Modbus Protocol Format: RTU Serial
The Modbus "RTU Serial" format is supported by the I-8417 and I-8817 controller systems
through both COM1 or COM2 communications ports, and the I-8437, I-8837, I-7188EG & I-
7188XG controller systems through the COM1 communications port, and the Wincon-
8037/8337/8737 controller systems through the COM2 communications port.

PC software programs and HMI hardware devices can access data from the variables in the
ISaGRAF controller system ONLY after that variable is assigned a unique network address
(please refer to Chapter 4). For more information regarding connecting a PC to an I-8xx7
controller system, please refer to Section 1.3.3 through 1.3.5 for details on how to properly
connect these devices.

It is CRITICAL that you must program the Modbus format EXACTLY as described to make a
proper connection between the Modbus device and the ISaGRAF controller system. The I-
8xx7, I-7188EG/XG & W-8xx7 controllers support the following Modbus functions.

Modbus function Action
1 Read N bits (booleans)
2 Read N bits (booleans)
3 Read N words

(signed short integers)
4 Read N words

(signed short integers)
5 Write 1 bit (boolean)
6 Write 1 word

(signed short integer)
15 Write N bits (booleans)
16 Write N words

(signed short integers)

To read boolean variables, both of function 1 or 3 may be used. If using function 1, values are
stored in a bit field while using function 3, variable TRUE means 0xFFFF.

To write boolean variables, both of function 5, 15 could be used. If using function 5, writing bit 0
of byte-vH to 1 will set the Boolean variable to TRUE. For ex, writing vH=1 or 3, or 255 will set
Boolean variable to TRUE.

To read analog variables, function 3 should be used.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 167

To write analog variables, both of function 6, 16 could be used.

To read long words (signed long integers, float), function 3 should be used. To write long words,
function 16 should be used. Please refer to section 4.2 for the definition of network address of
long words.

To assist you with the naming conventions used throughout the Modbus protocol-addressing
chapter, the following table describes the notations used in this chapter.

Slv Slave number (Net ID address of the I-8xx7)
Nbw Number of words
Nbb Number of bytes
Nbi Number of bits
AddH Modbus address, high byte , 0 ~ 0F
AddL Modbus address, low byte , 0 ~ FE
VH Word value, high byte
VL Word Value, low byte
V Byte value
CrcH Checksum, high byte , CRC-16
CrcL Checksum, low byte , CRC-16

IMPORTANT NOTE
All of the values used in the request and answer frames are hexadecimal values.
Modbus address described in this chapter is equal to Network address of the variable minus
one.
For ex., Modbus address 0 is associate with Network address 1. Modbus address FFE (4094)
is associate with Network address FFF (4095).

Function 1: Read "N" Bits
Function 1 reads "n" number of bits (nbi) in Boolean starting from Modbus address addH/addL.

V0, V1 … are the bit fields of number of bytes (nbb) using the following format.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 168

Bit 1 corresponds to the Boolean value of the variables with the Modbus address addH/addL.
Bit nbi corresponds to the Boolean value of the variable with the Modbus address addH/addL +
nbi – 1. If the value of the Boolean variable is "True", then the corresponding bit will be set to a
"1". If the value is "False", the corresponding bit will be set to a "0".

Function 2: Read N Bits
Function 2 has the same exact same format as function 1.

Function 3: Read N Words
Function 3 reads the number of words (nbw), in signed 16-bit integer format, starting from the
Modbus address addH/addL.

The number of bytes (nbb) is the total number of bytes from word value high byte (vH) to word
value low byte (vL) inclusive.

IMPORTANT NOTE About Function 3
Integer values can be read by function 3. A word in the modbus protocol is a 16-bit value
(signed short integer), and an integer variable is a 32-bit value, so only the lower 16 bits of the
integer variable are returned. If users would like to read a 32-bit integer (signed long integer) of
I-8xx7 controller, the proper network address of the variable should be set as described in
section 4.2.

Function 4: Read N Words
Function 4 has the same exact format as function 3.

Function 5: Write 1 Bit
Function 5 writes one (1) bit to the Boolean variable with the Modbus address addH/addL.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 169

Writing a 0xFF value to the byte value (V) will set the Boolean variable to "True". Writing a zero
to the byte value (V) is set the Boolean variable to "False".

Function 6: Write 1 Word
Function 6 writes one (1) word (16 bits) to the integer variable with the Modbus address
addH/addL.

Function 15: Write N Bits
Function 15 writes a number of bits (nbi) to the Boolean variables starting from the Modbus
address addH/addL to addH/addL + nbi – 1. The total number of bytes (nbb) is the total amount
of bytes occupied by nbi bits, that means nbb = (nbi+7)/8. For ex. nbi=1~8, nbb=1; nbi=9~16,
nbb=2.

V0, V1 … are the bit fields of number of bytes (nbb) using the following format.

Bit 1 corresponds to the Boolean value of the variables with the Modbus address addH/addL.
Bit nbi corresponds to the Boolean value of the variable with the Modbus address addH/addL +
nbi – 1. Writing a 1 to a bit will set the value of the corresponding Boolean variable to "True",
and writing a 0 to a bit will set the corresponding Boolean variable to "False".

Function 16: Write N Words

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 170

Function 16 writes a number of words (nbw) to the integer variables starting from the Modbus
address addH/AddL to addH/addL + nbw – 1. The number of bytes (nbb) is the total amount of
bytes occupied by number of words (nbw), that is nbb = 2 * nbw.

Examples Of Modbus Function Formats

Function 1: Read 15 bits starting from Modbus address 0x1020. The NET ID address is 1.

In this example function 1 returns 2 bytes, the value is 0x0012. This means variables with a
network address of 0x102A and 0x102D are "True" (Modbus address is 0x1029 and
0x102C), the rest of the variables are set to "False".

Function 5: Write 1 bit to the Boolean variable with the Modbus address 0x0006. The NET
ID address is 1. The value to write to is 0xFF.

In this example of function 5 the Boolean variable is set to "True".

Function 16: Write 2 words (4 bytes) to the integer variables with the Modbus address
starting from 0x2100. The first word value to write to is 0x1234. The second word value to
write to is 0x5678. The NET ID address is 1.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 171

5.2: Modbus Protocol Format: TCP/IP
The I-8437 and I-8837 (Ethernet port) controller systems support the Modbus "TCP/IP"
communications protocol.

ALL requests are sent via TCP on port number 502.

The Modbus TCP/IP protocol adds 6 extra bytes before the Modbus RTU serial protocol, and
these 6 extra bytes and the Modbus RTU serial protocol are all packed inside the TCP/IP
protocol.

The rest of the Modbus TCP/IP protocol is the same as the Modbus RTU Serial protocol after
byte No. of 6 except that the CRC-16 is not need for the Modbus TCP/IP protocol.

Example TCP/IP Transactions
The first example of a TCP/IP transaction is reading one (1) word at Modbus address 4 from
slave number 9 returning a value of 8; the transaction would be as follows:

The second example of a TCP/IP transaction is reading 8 bits starting from Modbus address 2
from slave number 7, returning a value of 0x49 (bit field: 01001001) would be as follows:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 172

5.3: Algorithm For CRC-16 Check
The following C language algorithm is for Modbus RTU Serial ONLY!! This CRC (Cyclic
Redundancy Check) program provides a checksum that can be used to validate information
being passed through Modbus RTU Serial protocol.
This CRC-16 check program first calls "crc_init()" one time at the beginning of the
communication to initialize the checksum table. Then you can call "crc_make()" to calculate a
checksum whenever you want to.

#define POLY_CRC16 0xA001
static BYTE TABLE1[256];
static BYTE TABLE2[256];

void crc_init(void) /* set crc table */
{
 WORD mask,bit,crc,mem;
 for(mask=0;mask<0x100;mask++)
 {
 crc=mask;
 for(bit=0;bit<8;bit++)
 {
 mem=crc & 0x0001;
 crc/=2;
 if(mem!=0) crc ^= POLY_CRC16;
 }
 TABLE2[mask]=crc & 0xff;
 TABLE1[mask]=crc >> 8;
 }
}

void crc_make(WORD size, BYTE *buff, BYTE *hi, BYTE *lo) /* calculate crc */
{
 BYTE car,i;
 BYTE crc[2];
 crc[0]=0xff;
 crc[1]=0xff;
 for(i=0;i<size;i++)
 {
 car = buff[i];
 car ^= crc[0];
 crc[0]=crc[1] ^ TABLE2[car];
 crc[1]=TABLE1[car];
 }
 *hi=crc[0];
 *lo=crc[1];
}

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 173

Chapter 6: Linking I-7000 & I-87xx Modules
The I-8xx7, I-7188EG/XG & W-8xx7 controller system provides the capability to integrate with
ICP DAS’s I-7000 and I-87xx (87K4 / 87K5 / 87K8 / 87K9) series modules. This functionality to
interface with these modules expands the capability of the I-8xx7, I-7188EG/XG & W-8xx7
controller series products.

You must first make sure that the I/O libraries have been installed, please refer to Section 1.2
for Installing The “ICP DAS Utilities For ISaGRAF”, and refer to Section 1.5 for connection
instructions between the I-8xx7 controller system to the I-7000 and I-87xx series modules.

6.1: Configuring The I-7000 & I-87xx Modules
To begin configuration of the I-7000 and I-87xx series modules to the controller system, use the
"7000 Utility" program to set up the I-7000 and I-87xx modules.

Once you have selected the "7000 Utility" program, the "7000 Utility" window will open.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 174

The "7000 Utility" program will go out and attempt to link to any I-7000 and I-87xx modules.

IMPORTANT NOTES Regarding I-7000 & I-87xx Modules
One I-8xx7, I-7188EG/XG controller system can link up to a maximum of 64 pcs. of I-7000 and
I-87xx modules(255 pcs for W-8xx7). It is recommended though that you do not link more than
40 modules to a single I-8xx7, 7188EG/XG & W-8xx7 controller system. Each I-7000 and I-
87xx module MUST have it’s own unique address to properly link to an ISaGRAF
controller system. Make sure to set the "Checksum" to disabled, and make sure that all
of the I-7000 and I-87xx modules are set to the same baud rate as the controller system
(19200 baud by default).

When you receive any of the I-7000 series modules you will receive documentation called
"Getting Started With I-7000 Series Modules" that provides instructions on how to properly
configure these modules. If you need assistance on changing the baud rate or checksum,
please refer to the "Change Baud Rate & Checksum" section in the "Getting Started With I-
7000 Series Modules". You can find all of the documentation on the CD provided with your I-
7000 series module from ICP DAS in a file titled "getstart.pdf".

The I-7000 and I-87xx "Analog Input" type modules MUST have their data format set to "2’s
Complement". This includes the I-7013, I-7016, I-7017, I-7018, I-7033, I-87013, I-87017, and
I-87018 analog input modules.

The I-7000 and I-87xx "Analog Output" type modules MUST have their data format set to
"Engineer Unit". This includes the I-7021, I-7022, I-7024, I-87022, I-87024 and I-87026
analog output modules.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 175

6.2: Opening The "Bus7000" Function
To create a link between the I-8xx7, I-7188EG/XG & W-8xx7 controller system and an I-7000
and I-87xx module, you need to connect the "Bus7000" function through the "ISaGRAF I/O
Connection" window. The "Bus7000" function is considered a "virtual board", and must be
selected from the "Equipments" section of the "Select Board/Equipment" window.

The "Bus7000" MUST be connected to slot number 8 or higher on the "ISaGRAF I/O
Connection" window (since slot 0 through 7 are used to connect to real I-8000 boards). Only
one "Bus7000" can be linked to one I-8xx7, I-7188EG/XG & W-8xx7 controller system! If
you attempt to connect more than one "Bus7000" to an ISaGRAF controller, it will not work.

In the example provided, set the slot below number 9 to "Bus7000: Remote".

The "com_port" parameter can have a value of 3 (for COM3) or 4 (for COM4) for the I-8xx7
controller, while 2 (COM2) or 3(COM3) for the I-7188EG/XG, and 3 (COM3) for the W-8xx7.

Com_port setting:
I-8xx7: 3 or 4 (COM3 or COM4)
I-7188EG/XG: 2 or 3
W-8xx7: 3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 176

This parameter defines which COM port ID the controller system will communicate with the I-
7000 / I-87xx module. The default value for the "com_port" parameter is 3.

The "com_baud" parameter defines the baud rate that the I-8xx7, I-7188EG/XG & W-8xx7 will
communicate with the I-7000 / I-87xx module. The possible values are 2400, 4800, 9600,
19200, 38400, 57600, and 115200. You must make sure that the controller system and the I-
7000 / I-87xx modules are all set to the same "com_baud" value.

The "host_watchdog" parameter enables or disables the watchdog function for the I-7000 and
I-87xx module. Setting the "host_watchdog" parameter to a non-zero value will enable the
"host_watchdog" feature.

The "watchdog_timer" parameter defines the amount of time before a "host_watchdog" will
occur. The value for the "watchdog_timer" is defined in a hexadecimal value with the units
defined in 0.1-second increments. For example, if the "watchdog_timer" is set to a value of 1E,
the "watchdog_timer" is set for 3 seconds. If the "watchdog_timer" value is set to 2A, the
"watchdog_timer" is set for 4.2 seconds.

If the host watchdog feature is active and the watchdog timer is exceeded on the controller
system (it means the connection is break between the controller and I-7000 / I-87xx modules),
the I-7000 / I-87xx modules will go to a "safe" predetermined value.

There is an analog input channel available on the "Bus7000: Remote" virtual board. This
analog input channel will return a value equal to the currently set baud rate.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 177

6.3: Programming an I-7000 Module
To link any I-7000 and I-87xx module to the I-8xx7, I-7188EG/XG & W-8xx7 controller system,
the "Bus7000" module MUST be opened first. Once the "Bus7000" is opened, the "I_7xxx" /
“I-87xx” function block can now be programmed and you can access all of the I/O channels
available from that function block, and that data can now be used in a LD program.

NOTE:
You can declare all variables which connect to the I-7xxx / I-87xx function block as
“Internal“ attribution.

Example 1: Programming An I-7050D Module

Example 2: Programming An I-7041D Module

Address of
I-76050D

8 D/O channels of I-
7050D. Can declared
as “Internal” attribute.

7 D/I channels of I-
7050D. Can be
declared as “Internal”
attribute.

Connect well will
return TRUE.

Address of
I-7041D

14 D/I channels of
I-7041D. Can be
declared as “Internal”
attribute.

Connect well will
return TRUE.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 178

Example 3: Programming An I-7017 Module
The Data Format Used Is: 2’s Complement

The following table describes the scaling factor from an analog signal to an integer value.

Value in I-7017 block (decimal)Range ID
(set by using
7000 Utility)

Electrical
range -32768 0 +32767

8 ± 10V - 10V 0V + 10V
9 ± 5V - 5V 0V + 5V
A ± 1V - 1V 0V + 1V
B ± 500mV - 500mV 0mV + 500mV
C ± 150mV - 150mV 0mV + 150mV
D ± 20mA - 20mA 0mA + 20mA

Address of
that I-7017

If connect well,
return TRUE

The 8 A/I channels of
I-7017. Can be declared
as “Internal” attribute.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 179

For additional information regarding any I-7000 and I-87xx module, click on the function block
and press the "F1" key for an on-line description with "Technical Notes" for the selected
function block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 180

6.4: Redundant Bus7000
7188EG(Rev.1.19 or above), 7188XG(Rev.1.17 or above) & I-8417/8817/8437/8837(Rev.2.27
or above) support Redundant Bus7000. These configurations are listed as the following. The
Fbus/Ebus are for exchanging data between the “Redundant Master” & “Redundant Slave”,
and the Fbus/Ebus cable must be always working(break is not allowed).

I-7188XG:

I-7188EG:

I-8417/8817:

I-7188XG

I-7188XG

I-7000 I-7000 I-87KCom2:Fbus

Redundant Slave

Redundant Master COM3:Bus7000 (need a RS485 Xxxx board)

COM3:Bus7000 if using Fbus (need a RS485 Xxxx board)
COM2:Bus7000 if using Ebus

I-7188EG

I-7188EG

I-7000 I-7000 I-87KCom2: Fbus
 or Ebus

Redundant Slave

Redundant Master

I-8417/8817

I-8417/8817

I-7000 I-7000 I-87K
Com3: Fbus

Redundant Master

Redundant Slave

COM4:Bus7000 if using Fbus (need a RS232/485 Conveter)

Configuration 1

Configuration 2

Configuration 3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 181

I-8437/8837:

Operations Principle:
When the system is powered up, the control right of Bus7000 belong to “Redundant Master”.
If “Redundant Master” is dead(Power off), “Redundant Slave” takes over the control right of

Bus7000.
If “Redundant Master” is alive from dead (power up again), it takes over the control of Bus7000

again.
User’s control data is exchanging via Fbus or Ebus.

The “i7000_en” can be used to Enable/Disable the control right of Bus7000. The system’s
default status is Enable.

Demo example for I-7188XG:
The demo project uses “Configuration 1” and located at demo_48a & demo_48b.
It can be download at ICP DAS’s ftp site.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/7188xg/demo/

Demo example for I-7188EG:
The demo project uses “Configuration 2” with Ebus and located at demo_51a & demo_51b.
It can be download at ICP DAS’s ftp site.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/7188eg/demo/

Demo example for I-8437/8837:
The demo project uses “Configuration 4” with Ebus and located at demo_49a & demo_49b.
It can be download at ICP DAS’s ftp site.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo/

I-8437/8837

I-8437/8837

I-7000 I-7000 I-87K
Com3: Fbus
 or Ebus

Redundant Master

Redundant Slave

COM4:Bus7000 if using Fbus (need a RS232/485 Convetor)
COM3:Bus7000 if using Ebus

Configuration 4

Parameter:
EN_7000_ integer True: Enable, False: Disable

Return:
Q_ boolean Always return True.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 182

Chapter 7: Controller To Controller Data Exchange
The I-8xx7, I-7188EG/XG & W-8xx7 controller system provides the capability of exchanging
data with other I-8xx7, I-7188EG/XG & W-8xx7 controller systems. For this functionality to
work properly you must make sure that the I/O libraries MUST be installed. If you haven’t
installed it already, please refer to Section 1.2 for Installing The “ICP DAS Utilities For
ISaGRAF” and Section 1.4 for creating a Fbus connection between I-8xx7 controller systems.

Important Note:
The max. boolean & integer package No. of Fbus & Ebus reduce from 256 to 128 since
driver version of I-8417/8817/8437/8837:2.42 , I-7188EG:1.32 & I-7188XG:1.29

7.1: Basic Fbus Rules
Any I-8xx7 & I-7188EG/XG controller system can access data from another I-8xx7 & I-
7188EG/XG through the Fbus data exchange system. While Wincon-8xx7 doesn’t support
Fbus, it supports Ebus only. Please refer to section 7.5 for programming Ebus on I-
8437/8837, I-7188EG & W-8037/8337/8737. There are 2 types of data that can be exchanged
through the Fbus protocol; they are "Boolean" and "integer".

The Fbus driver first creates a packet of eight Boolean values to form a "Boolean package",
and then creates a packet of eight 32-bit integers to form an "integer package". Both of the
"Boolean packages" and "integer packages" can be distributed on the Fbus to allow the data to
be exchanged from one I-8xx7 & I-7188EG/XG controller system to another I-8xx7 & I-
7188EG/XG controller system.

The Following Fbus Rules MUST Be Observed:

RULE #1: Each "Boolean package" must have an attached identification number ranging from
1 to 128. This means that there is a maximum of 128 "Boolean packages" that can be
exchanged across an Fbus connection.

Each "Boolean package" contains 8 Boolean values, and these Boolean values can only have
the value of either "True" or "False". The Boolean values in the "Boolean package" can be
assigned and exchanged with either "Internal", "Input", or "Output" Boolean variables or
Boolean constants.

RULE #2: Each "integer package" must have an attached identification number ranging from 1
to 128. This means that there is a maximum of 128 "integer packages" that can be exchanged
across an Fbus connection.

Each "integer package" contains eight 32-bit integer values. The integer values can range
from –2147483648 to 2147483647. The integer values in the "integer package" can be
assigned and exchanged with either "Internal", "Input", or "Output" integer variables or integer
constants.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 183

Rule #3: Each number assigned to a "Boolean package" or an "integer package" can only be
written to by one I-8xx7 & I-7188EG/XG controller system across the Fbus.

Each I-8xx7 & I-7188EG/XG controller system CANNOT write the same identification number
for either a "Boolean package" or an "integer package" across the Fbus. WRITTING A
PACKAGE IS NOT SHARED with the other I-8xx7 & I-7188EG/XG controller systems across
the Fbus network.

In this example, there are five I-8xx7 controller systems communicating through an Fbus
network, and the controller systems are named S1, S2, S3, S4, and S5 respectively. If the S1
controller system attempts to write a "Boolean package" with an ID of "1" and an "integer
package" with an ID of "1" across the Fbus, the other four controllers CANNOT write either a
"Boolean package" or an "integer package" with the same number. However, the other
controller systems could write a "Boolean package" with an ID of "3" and an "integer package
with an ID of "2".

There is no limitation on how many I-8xx7 & I-7188EG/XG controllers can read the same
number package across the Fbus network. Any of the S2, S3, S4, S5 controller systems can
read the "Boolean package" with an ID of "1" and the "integer package" with an ID of "1" if
desired.

Rule #4: ONLY ONE I-8xx7 or I-7188EG/XG controller system can be configured as a Fbus
"Master", all the others I-8xx7 & I-7188EG/XG controller systems MUST be configured as a
Fbus "Slave".

The "master" controller sends commands for how data is to be exchanged across the Fbus
network. If you configure more than one I-8xx7 or I-7188EG/XG controller system as a
"master", or configure none of the I-8xx7 & I-7188EG/XG controller systems as a "master" on
the Fbus, NO DATA CAN BE EXCHANGED across the Fbus network.

Important Note:
The max. boolean & integer package No. of Fbus & Ebus reduce from 256 to 128 since
driver version of I-8417/8817/8437/8837:2.42 , I-7188EG:1.32 & I-7188XG:1.29

7.2: Configuring An I-8xx7 To Be A Fbus "Master" Or
"Slave"
To begin configuring an I-8xx7 & I-7188EG/XG controller system as either a Fbus master or
slave, first open up the "ISaGRAF I/O Connections" window and double click on a slot number
higher than 7. The "Select Board/Equipments" window will now open, click on "Equipments",
and then double click on the "fbus_s" selection to configure an Fbus slave, or double click on
"fbus_m" to configure an Fbus master. Remember, ONLY ONE controller can be the Fbus
master, and you CANNOT configure an I-8xx7 & I-7188EG/XG controller system to be both a
Fbus master and a Fbus slave.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 184

If you configure an I-8xx7 & I-1788EG/XG controller system as an Fbus slave, only one
parameter needs to be set, and that is the "baud_rate" parameter. The baud rate parameter
can be set to 2400, 4800, 9600, 19200, 38400, 57600 or 115200 baud rate. The default baud
rate value is 19200 for the I-8xx7 & I-7188EG/XG controller system. All controllers on the same
Fbus network MUST be set to the same baud rate.

There is a digital input channel associated with the "fbus_s: rate" equipment. This function will
return the status when opening up an Fbus connection. If the Fbus connection has been
established, the digital input channel will return a "TRUE" value. If the Fbus connection failed
to establish, the digital input channel will return a "FALSE" value.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 185

If you configure an controller as Fbus master, the parameter "baud_rate" and "fbus_m:
rate" can be set to 2400, 4800, 9600, 19200, 38400, 57600 or 115200. The default value is
19200 for the controller. All controllers on the same Fbus MUST be set to the same baud rate.

There is a digital input channel associated with the "fbus_m: rate" equipment. This function will
return the status when opening up an Fbus connection. If the Fbus connection has been
established, the digital input channel will return "TRUE" value, if the Fbus connection failed to
establish, the digital input channel would return a value of "FALSE".

7.2.1: Configuring The Fbus Master Boolean Packages
To begin configuring the Fbus Master Boolean Packages, click on the "boo_pack" selection
from the "fbus_m" I/O connection.

Only Package No. 1 to
128 is available.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 186

The parameter "package_xxx_xxx" at "fbus_m: boo_pack" indicates the "Boolean package"
number which is allowed to be written to or read from across the Fbus network. The parameter
value is given as a 32-bit integer in hexadecimal.

As an example, if the "package_1_32" is set to "FFFFFFFF" this will enable all the packages
from number 1 to number 32 to be written to or read from across the Fbus network. If the
"package _1_32" is set to a value of "A", this will only enable the number 2 and number 4
Boolean packages to be written to or read from across the Fbus network. The more packages
that are enabled on a Fbus network the slower the communication efficiency will be. With this
in mind, always remember to enable only the required number of packages that you
need for your application so you will have greater communication efficiency across the
Fbus network.

The parameter "package_xxx_xxx" at "fbus_m: ana_pack" indicates the "integer package"
number which will be written to and read from on the Fbus network. The "fbus_m: ana_pack" is
used to read and write 32-bit integer values across the Fbus network. Each of the parameter
values is expressed as 32-bit integer values in hexadecimal, and the same configuration rules
apply as those for the "Boolean package".

Only Package No. 1 to
128 is available.

User’s Manual Of

7.3: Programming Fbus Packages
Before you can exchange any data across a Fbus network, you must make sure that each I-
8xx7 & I-7188EG/XG is either configured as either a Fbus master "fbus_m" (and remember,
only ONE controller can be the master) or Fbus slave "fbus_s". Refer to Section 7.2 for details
on how to implement these configurations.

The following Fbus function blocks can be used in a LD program to exchange data across an
Fbus network.

The below two blocks can be used to exchange “real” value via Fbus.
Block “Real_Int” can be used to Map a “real” value to a 32-bit integer. So that you can deliver
this integer to the Fbus, and then on the receiver controller, use “Int_Real” to map this integer
back to the original “real” value.

The below bloc

Fbus_b_r read one boolean package.
Fbus_b_w write one boolean package.
Fbus_n_r read one integer package.
Fbus_n_w write one integer package.

Only Package No. 1 to
128 is available.
Int_Real Map a long integer to a Real value.
Real Int Map a Real value to a long integer.
ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 187

k is to get the communication ststus of each Boolean & Integer Package.

Fbus_sts Get ststus of each Package.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 188

Fbus Function #1: "Fbus_b_r"
The "Fbus_b_r" function reads one Boolean package from the Fbus network. In the example
below the "Fbus_b_r" function has a Boolean package ID address of "1". The "A1" output
contains the value of the first Boolean of the package No. of 1, the "A2" output contains the
value of the second Boolean of the package No. of 1, and the "A3" output contains the value of
the third Boolean of the package No. of 1. The other outputs follow the same format to where
the "A8" output contains the value of the eighth Boolean of the package No. of 1.

Fbus Function #2: "Fbus_b_w"
The "Fbus_b_w" function writes one Boolean package on the Fbus network. In the example
below the "Fbus_b_w" function has a Boolean package ID address of "255", the "C1" input
writes a value to the first Boolean of the package No. of 255, the "C2" input writes a value of the
second Boolean of the package No. of 255, and the "C3" input writes a value of the third
Boolean of the package No. of 255. The other inputs follow the same format to where the "C8"
input writes a value of the eighth Boolean of the package No. of 255.

Package No. should be
aconstant value not a
variable value

Please do not add any
condition on the left of
the Fbus_xxx block.

Fbus_b_w always
returns TRUE

Package No. should be
aconstant value not a
variable value

Please do not add any
condition on the left of
the Fbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 189

Fbus Function #3: "Fbus_n_r"
The "Fbus_n_r" function reads one integer package from the Fbus network. In the example
below the "Fbus_n_r" function has an Integer package ID address of "5". The "D1" output
contains the value of the first integer of the package No. of 5, the "D2" output contains the value
of the second integer of the package No. of 5, and the "D3" output contains the value of the
third integer of the package No. of 5. The other outputs follow the same format to where the
"D6" output contains the value of the sixth integer of the package No. of 5.

Fbus Function #4: "Fbus_n_w"
The "Fbus_n_w" function writes one integer package to the Fbus network. In the example
below the "Fbus_n_w" function write variables “E1” to the first integer of the package of No. 1.
“E2” to the second integer of the package of No. 1. “E3” to the third integer of the package of No.
1.

Package No. should be
aconstant value not a
variable value

Please do not add any
condition on the left of
the Fbus_xxx block.

Fbus_n_w
always returns
TRUE

Package No. should be
aconstant value not a
variable value

Please do not add any
condition on the left of
the Fbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 190

7.4: An Fbus Data Exchange Example
Example Description:
In this Fbus data exchange example there are three I-8xx7 controller systems linked together in
an Fbus network. The I-8xx7 controller systems are named "SA (master I-8xx7 controller
system #1)", "SB (slave I-8xx7 controller system #2), and "SC (slave I-8xx7 controller system
#3).

One of the digital input values from the SA controller (master I-8xx7 system) needs to be
shared with the SB and SC (the slave I-8xx7 systems) controllers across the Fbus network, and
the name for this digital input value will be called "ZZ".

The first task of this example is to create an Input variable named ZZ on the SA controller
system. Use the "ISaGRAF Project" window to declare ZZ as an "input" variable, and then link
the ZZ input variable using the "ISaGRAF I/O Connections" window for the SA controller
system.

Next, you will need to declare a Boolean Internal variable named ZZ for both the SB and SC
controllers (so they can exchange the ZZ value with the SA controller system). You must
declare the ZZ variable as an internal variable for the SB and SC controllers because there is
only one real input variable (from the SA controller) that is being exchanged, and neither the SB
or SC has a real input variable named ZZ.

An additional requirement for this example is that an internal integer value named "WW" that
comes from the SB controller system needs to be shared with the SC controller system. To
accomplish this declare an Internal integer variable named WW on both the SB and SC
controller systems.

Example Prerequisites:
The SA controller system is the Fbus master controller and the SB and SC controllers are Fbus
slave controllers. Each of the controllers has their baud rates set to 19200.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 191

Setting The SB and SC Controllers As Fbus Slaves:
You should use the "ISaGRAF I/O Connections" window to declare the SB and SC controller
systems as Fbus slaves.

Use the "ISaGRAF I/O Connections window to declare the SA controller system as the Fbus
master controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 192

Additionally, enable the Boolean package for the SA controller:

Also enable the integer package for the SA controller system:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 193

The ISaGRAF LD Project For The SA Controller:

The ISaGRAF LD Project For The SB Controller:

Fbus_n_w always return TRUE,
these 2 blocks can link together.

Read boolean
package No. 1 to
get the first value
to internal
boolean variable
ZZ

Write integer package
No. 1 to Fbus.
Variable WW is
included .at 1st value.

Pack. No.

Write boolean
pack. No.1 to the
Fbus, variable ZZ
is included at the
first value.

FBUS_B_W always
return TRUE

Set the other non-
used values in this
package to FALSE

Package No. should
be aconstant value
not a variable value.

Please do not add any
condition on the left of
the Fbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 194

The ISaGRAF LD Project For The SC Controller:

Read boolean
package No. 1 to
get the first value
to internal boolean
variable ZZ

Read Integer package No. 1 to
get the first value to internal
integer variable WW

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 195

7.5: Programming The Ebus
Ebus is a software mechanism which allows I-8437/8837, I-7188EG & W-8037/8337/8737
controllers to access data to each other through the ethernet port. Ebus is only working on the
local area. That means exchanging data through a gateway is no possible.

Important Note:
The max. boolean & integer package No. of Fbus & Ebus reduce from 256 to 128 since
driver version of I-8417/8817/8437/8837:2.42 , I-7188EG:1.32 & I-7188XG:1.29

The I-8437, I-8837 controllers support Ebus since its driver version of 2.15 and the I-7188EG
support Ebus since its driver version of 1.08. And W-8037/8337/8737 support Ebus since its
driver version of 3.10. Please refer to Appendix C to make sure your I-8xx7’s controller driver
version is the same or higher. You can obtain the new released driver from:

http://www.icpdas.com/products/8000/isagraf.htm

7.5.1: Basic Ebus Rules
The I-8437/ 8837, I-7188EG & W-8037/8337/8737 Ebus driver first creates a packet of eight
Boolean values to form a "Boolean package", and then creates a packet of eight 32-bit integers
to form an "integer package". Both of the "Boolean packages" and "integer packages" can be
distributed on the Ebus to allow the data to be exchanged from one controller to another
controller.

The basic Ebus rules are similiar as Fbus (refer to 7.1) as below.

RULE #1: Each Ebus network is identified with a “Group_No” ranging from 1 to 10. Data is only
exchangable with controllers that are assigned with the same “Group No”.

For example, there are 5 controllers located at the same local ethernet area, named A1, A2, A3,
A4, A5 respectively. A1, A2 & A3 are assigned with Ebus: Group_No = 1 while A4 & A5 are
assigned with Ebus: Group_No = 2. Therefore, A1 can access data from A2 & A3 however can
not access data from A4 & A5.

RULE #2: Each "Boolean package" in the same Ebus:Group_No must have an attached
identification number ranging from 1 to 128. This means that there is a maximum of 128
"Boolean packages" that can be exchanged across an Ebus:Group_No connection.

Ethernet

8437/ 8837

8437/ 8837

7188EG

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 196

Each "Boolean package" contains 8 Boolean values, and these Boolean values can only have
the value of either "True" or "False". The Boolean values in the "Boolean package" can be
assigned and exchanged with either "Internal", "Input", or "Output" Boolean variables or
Boolean constants.

RULE #3: Each "integer package" in the same Ebus:Group_No must have an attached
identification number ranging from 1 to 128. This means that there is a maximum of 128
"integer packages" that can be exchanged across an Ebus:Group_No connection.

Each "integer package" contains eight 32-bit integer values. The integer values can range
from –2147483648 to 2147483647. The integer values in the "integer package" can be
assigned and exchanged with either "Internal", "Input", or "Output" integer variables or integer
constants.

Rule #4: Each number assigned to a "Boolean package" or an "integer package" can only be
written to by one I-8437/ 8837 (or I-7188EG or W-8037/8337/8737) controller system across
the same Ebus:Group_No network.

Each I-8437/ 8837, I-7188EG or W-8037/8337/8737 controller CANNOT write the same
identification number for either a "Boolean package" or an "integer package" across the same
Ebus:Group_No. WRITTING A PACKAGE IS NOT SHARED with the other controller across
the same Ebus:Group_No network.

In this example, there are five controllers communicating through an Ebus:Group_No network,
and the controllers are named S1, S2, S3, S4, and S5 respectively. If the S1 controller
attempts to write a "Boolean package" with an ID of "1" and an "integer package" with an ID of
"1" across the Ebus:Group_No, the other four controllers CANNOT write either a "Boolean
package" or an "integer package" with the same number. However, the other controllers could
write a "Boolean package" with an ID of "3" and an "integer package with an ID of "2".

There is no limitation on how many controllers can read the same number package across the
same Ebus:Group_No network. Any of the S2, S3, S4, S5 controllers can read the "Boolean
package" with an ID of "1" and the "integer package" with an ID of "1" if desired.

Rule #5: ONLY ONE I-8437/ 8837, I-7188EG or W-8037/8337/8737 controller in the same
Group_No can be configured as a Ebus "Master", all the others controller in the same
Group_No MUST be configured as a Ebus "Slave".

The "master" controller sends commands for how data is to be exchanged across the same
Ebus:Group_No network. If you configure more than one controller as a "master", or configure
none of the controllers as a "master", NO DATA CAN BE EXCHANGED across the
Ebus:Group_No network.

Important Note:
The max. boolean & integer package No. of Fbus & Ebus reduce from 256 to 128 since
driver version of I-8417/8817/8437/8837:2.42 , I-7188EG:1.31 & I-7188XG:1.28

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 197

7.5.2: Configuring the Controller To Be A Ebus "Master" Or "Slave"
To begin configuring an I-8437/ 8837, I-7188EG or W-8037/8337/8737 controller system as
either a Ebus master or a slave, first open up the "ISaGRAF I/O Connections" window and
double click on a slot number higher than 7. The "Select Board/Equipments" window will now
open, click on "Equipments", and then double click on the "Ebus_s" selection to configure an
Ebus slave, or double click on "Ebus_m" to configure an Ebus master. Remember, ONLY ONE
I-8437/ 8837, I-7188EG or W-8037/8337/8737 controller system can be the Ebus master, and
you CANNOT configure an controller to be both a master and a slave.

If you config a controller as an Ebus slave, only one parameter needs to be set, the
“Group_No”. The valid value is ranging from 1 to 10. Set to other value will become a default
value , 1.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 198

If you config a controller as an Ebus master, the parameter “Group_No” should be set to the
same as the salve. The valid value is ranging from 1 to 10. Set to other value will become a
default value , 1.

Configuring The Ebus Master Boolean Packages:
To begin configuring the Ebus Master Boolean Packages, click on the "boo_pack" selection
from the "Ebus_m" I/O connection.

The parameter "package_xxx_xxx" at "Ebus_m: boo_pack" indicates the "Boolean package"
number which is allowed to be written to or read from across the Ebus network. The parameter
value is given as a 32-bit integer in hexadecimal.

As an example, if the "package_1_32" is set to "FFFFFFFF" this will enable all the packages
from number 1 to number 32 to be written to or read from across the Ebus network. If the
"package _1_32" is set to a value of "A", this will only enable the number 2 and number 4
Boolean packages to be written to or read from across the Ebus network. The more packages
that are enabled on a Ebus network the slower the communication efficiency will be. With this
in mind, always remember to enable only the required number of packages that you

Only Package No. 1 to
128 is available.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 199

need for your application so you will have greater communication efficiency across the
Ebus network.

The parameter "package_xxx_xxx" at "Ebus_m: ana_pack" indicates the "integer package"
number which will be written to and read from on the Ebus network. The "Ebus_m: ana_pack"
is used to read and write 32-bit integer values across the Ebus network. Each of the parameter
values is expressed as 32-bit integer values in hexadecimal, and the same configuration rules
apply as those for the "Boolean package".

Only Package No. 1 to
128 is available.

Only Package No. 1 to
128 is available.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 200

7.5.3: Programming Ebus Packages
Before you can exchange any data across a Ebus network, you must make sure that each I-
8437/ 8837, I-7188EG & W-8037/8337/8737 is configured as either a Ebus master "ebus_m"
(and remember, only ONE controller can be the master in the same Ebus “Group_No”) or Ebus
slave "ebus_s". Refer to Section 7.5.2 for details on how to implement these configurations.

The following Ebus function blocks can be used in a LD program to exchange data across an
Ebus network.

The below two blocks can be used to exchange “real” value via Ebus.
Block “Real_Int” can be used to Map a “real” value to a 32-bit integer. So that you can deliver
this integer to the Ebus, and then on the receiver controller, use “Int_Real” to map this integer
back to the original “real” value.

The below block is to get the communication ststus of each Boolean & Integer Package.

To program the Ebus_x_x blocks is similar to the Fbus, please refer to section 7.3 & 7.4 for
detail.

Ebus_b_r read one boolean package.
Ebus_b_w write one boolean package.
Ebus_n_r read one integer package.
Ebus_n_w write one integer package.

Int_Real Map a long integer to a Real value.
Real_Int Map a Real value to a long integer.

Ebus_sts Get ststus of each Package.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 201

Chapter 8: Linking The Controller To Modbus RTU &
Other Devices

The I-8xx7, I-7188EG/XG & W-8xx7 can interface with the Modbus RTU Serial or other Modbus
devices. Please refer to Section 1.6 for the connection interface between the I-8xx7 controller
system to Modbus RTU and other Modbus devices.

8.1: Configuring The Controller For A Modbus Device
To begin configuring an I-8xx7, I-7188EG/XG & W-8xx7 controller system to interface with a
Modbus device, you must first configure the ISaGRAF program by linking the "Mbus" function
to the ISaGRAF project. Open the "ISaGRAF I/O Connections" window and double click on a
slot number higher than 7 and the "Select Board/Equipments" window will open. From the
"Library", click on the "Equipments" choice, and then click on the "Mbus: Modbus Master
On …" selection, and then click on the "OK" to complete the installation.

IMPORTANT NOTE:
Only ONE "Mbus" complex equipment function can be linked to ONE I-8xx7, I-7188EG/XG &
W-8xx7 controller system.

"Mbus: com_port" Parameter
The "Mbus: com_port" parameter sets the same baud rate that the I-8xx7, I-7188EG/XG &
W-8xx7 controller system and all Modbus devices will communicate at. ALL devices MUST be
set to the same baud rate setting. The default baud rate setting for the "Mbus: com_port"
parameter is 19200.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 202

"Mbus: port_no" Parameter
The "Mbus: port_no" parameter defines which COM port the Modbus devices will
communicate with the controller. The "Mbus: port_no" parameter can be set to either a value
of “1” (COM1), "3" (COM3), "4" (COM4) or “5” (COM5 on the I-8112/8114/8142/8144 board) for
the I-8417/8817/8437/8837, while “1” , "2" , "3" for the I-7188EG, and "2" , "3" for the I-7188XG
& the W-8037/8337/8737. The default setting for the "Mbus: port_no" parameter is "4".

Note:
When setting COM1 of the I-8417/8817/8437/8837 & the I-7188EG to be a Modbus master
port, please refer to Appendix C.1 – “Setting COM1 As None-Modbus Port” to disable
COM1:Modbus RTU port.
W-8xx7’s COM2 is Modbus RTU port by default, please disable it if using it as a Modbus
master port. Please refer to W-8xx7’s “Getting Started” Manual.

"Mbus: baud" Parameter
The "Mbus: baud" parameter defines what the communications baud rate setting will be. The
"Mbus: baud" can be set to 2400, 4800, 9600, 19200, 38400, 57600 or 115200 baud rate. The
default baud rate value is 19200 for the I-8xx7, I-7188EG/XG & W-8xx7 controller system. All
controllers on the same Modbus MUST be set to the same baud rate.

"Mbus: parity" Parameter
The "Mbus: parity" parameter defines what the communications parity setting will be. Setting
the "Mbus: parity" parameter to a value of "0" sets the parity to "none", a value of "1" sets the
parity to even, and a value of "2" sets the parity to odd.

"Mbus: stop_bit" Parameter
The "Mbus: stop_bit" parameter defines the number of stop bits will be used in the Modbus
communications. If the "Mbus: stop_bit" parameter is set to "1", this equals 1 stop bit, and a
value of "2" equals 2 stop bits.

User’s

8.2: Programming A Modbus Device

The following function blocks can be used to pass data through the Modbus protocol in an LD
program.

NOTE
The m
8xx7

Modb
The f
Modb
exam
of Mo
Mbus_b_r Reads 8 bits (booleans) from modbus devices.
Mbus_br1 Reads 8 bits (booleans) with period time from modbus devices.
Mbus_b_w Writes 1 to 4 bits to modbus devices.
Mbus_n_r Reads 8 words (short integers) from modbus devices.
Mbus_nr1 Reads 8 words (short integers) with period time from modbus devices.
Mbus_n_w Writes 1 to 4 words to modbus devices.
Mbus_r Read Modbus code 1 to 4 from modbus devices
Mbus_r1 Read Modbus code 1 to 4 with period time from modbus devices
Mbus_wb Using Modbus code 15 to write 1 to 16 bits.
 Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 203

:
aximum number of each "Mbus_x_x" function block that can be used with one I-

 & I-7188EG/XG controller system is 64, while 256 for W-8037/8337/8737.

us Example Function #1: "Mbus_b_r"
ollowing example the "Mbus_b_r" function block is reading five (5) bits from a slave
us device with a NET ID address of 1, with the Modbus address starting from 1. In this
ple the results of "B1" contains the value of the Modbus address 1, "B2" equals the value
dbus address 2, etc. "B5" equals the value of the Modbus address 5.

“Slave_” & “Addr_” should
be a constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 204

Modbus Example Function #2: "Mbus_b_w"
The following example of the "Mbus_b_w" function block is writing one (1) bit to a slave Modbus
device with a NET ID address of 1. The "Mbus_b_w" function will only write this one bit when
the "ACTION_" line is true. In the example below the resulting value of "B1" is written to the
Modbus address 16#1001 (or 4097) of that Modbus device when the "ACTION_" line is true.

The value of "Stat1" is connected to the output coil and if the operation is successful "Stat1" will
be true, otherwise the value of "Stat1" will be false.

If the “ACTION_” input keeps at the status of TRUE, it will continue to write this "B1" many times
to that Modbus device until it is reset to FALSE. If you just want to write one time, you can write
a LD program similar as the following. The M0 is declared as an internal Boolean variable.

“Slave_” , “Addr_” &
“NUM_W_” should be a
constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

“Slave_” , “Addr_” &
“NUM_W_” should be a
constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 205

Modbus Example Function #3: "Mbus_n_r"
The following example the "Mbus_n_r" function block is reading eight (8) words from a slave
Modbus device with a NET ID address of 2 (the Modbus address starts from 1). In this example
the results of "A1" contains the value of the Modbus address 1, "A2" equals the value of
Modbus address 2, etc., through "A8" which equals the value of the Modbus address 8.

The value of "Stat1" is connected to the output coil and if the operation is successful "Stat1" will
be true, otherwise the value of "Stat1" will be false.

Modbus Example Function #4: "Mbus_n_w"
The following example of the "Mbus_n_w" function block is writing three (3) words to a slave
Modbus device with a NET ID address of 1, and the Modbus address is starting from 16#201.
The "Mbus_n_w" function will only write when the "ACTION_" line is true. In this example when
the "ACT1" line is True, the value of A1 will be written to the value of Modbus address 16#201
of that Modbus device, the value of A2 will be written to the value of Modbus address 16#202,
and A3 will be written to the value of Modbus address 16#203.

The value of "Stat1" is connected to the output coil and if the operation is successful "Stat1" will
be true, otherwise the value of "Stat1" will be false.

If the “ACTION_” input keeps at the status of TRUE, it will continue to write these "A1" through
"A3" many times to that Modbus device until it is reset to FALSE. If you just want to write one

“Slave_” & “Addr_” should
be a constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

“Slave_” , “Addr_” &
“NUM_W_” should be a
constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 206

time, you can write a LD program similar as the following. The M0 is declared as an internal
Boolean variable.

“Slave_” , “Addr_” &
“NUM_W_” should be a
constant value not a
variable value.

Please do not add any
condition on the left of
the Mbus_xxx block.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 207

Chapter 9: Commonly Used ISaGRAF Utilities
The following chapter describes many useful features and utilities of the ISaGRAF Workbench
programming environment. These features and utilities make programming an ISaGRAF
project quick and easy.

This chapter in no way contains all of the features and utilities available with the ISaGRAF
Workbench program. For more details and information about all the features the ISaGRAF
Workbench program has to offer consult the "ISaGRAF USER’s GUIDE" manual which can be
found from the CD ROM of the ISaGRAF workbench. Its file name is either “ISaGRAF.pdf” or
“ISaGRAF.doc”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 208

9.1: Creating An ISaGRAF Project Groups
A very useful feature of the ISaGRAF program is the ability to organize numerous programs
into "projects". The "Creating Projects" feature assists an ISaGRAF programmer who must
create and maintain many different ISaGRAF programs for different application projects.

If you want to delete an existing project group, simply use the Windows Explorer to locate the
ISaGRAF sub-directory you want to delete. An example of this is that if you wanted to delete
the project just created, use the Windows Explorer and go to the C:\isawin\factory directory,
and then just delete the "factory" sub-directory.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 209

9.2: Uploading An ISaGRAF Project
There may be occasions when you will want to "Upload" an ISaGRAF project from an I-8xx7,
I-7188EG/XG & W-8xx7 controller system to your development PC. This is easily
accomplished IF the "Upload" function from the "Compiler Option" is turned on.

To turn the upload function on from the "Compiler Option", open the "ISaGRAF Programs"
window, select "Make" from the menu bar, and then click on "Compiler Options". The
"Compiler Options" window will open, make sure the "ISA86M: TIC Code For Intel" is selected,
and then click on the "Upload" button. The "Prepare Project For Upload" window will open,
click on the "Embed Source Code For Upload" checkbox and then click on the "OK" button.

VERY IMPORTANT NOTE:
Option “Comments for not connected I/O channels” must be choosed if “Directly
represented variables” is used in this project (refer to section 3.4).

After you have checked the "Embed Source Code For Upload" checkbox and clicked on the
"OK" button, you will need to recompile the project and download the project to the I-8xx7, I-
7188EG/XG & W-8xx7 controller system.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 210

IMPORTANT NOTE:
Once you have enabled the "Upload" option, the code generated by the compiler will increase
the size of the original program from ONE & A HALF TO THREE TIMES the original program
size. If the uploaded code size is larger than 64K bytes, you will not be able to download the
program to the I-8xx7 & I-7188EG/XG controller system. The code size limitation is 512K bytes
for W-8xx7 controller system.

Before trying to download the program it is advisable that you check the size of the uploaded
program. To check the uploaded program size, use the Windows Explorer program and go to
the appropriate sub-directory that the application program resides in. As an example, the
"SIMPLELD" program that was create resides in the C:\ISAWIN\DEMOPGM\SIMPLELD
program sub-directory.

Remember, the "DEMOPGM" sub-directory is the Project group that the SIMPLELD program
resides in, and the "SIMPLELD" sub-directory is where the actual application code files reside
in. Look for the file named "APPLI.X8M" and check the size of this file. The "APPLIC.X8M" file
is the file that contains the actual code that will be uploaded or downloaded to the I-8xx7
controller system. Make sure the sizes of this file DOES NOT exceed 64K for I-8xx7 & I-
7188EG/XG. And Do not exceed 512K for W-8xx7.

UPLOADING AN ISaGRAF PROJECT
To upload an ISaGRAF project from an I-8xx7, I-7188EG/XG & W-8xx7 controller system open
the "ISaGRAF Project Management" window, select "File", and then click on "Upload Project".
The "Upload Project" window will now open, and check that the communication settings
between your development PC and the I-8xx7, I-7188EG/XG & W-8xx7 controller system
match each other. If the communication settings DO NOT match between the development PC
and the controller, click on the "Setup" button to configure the proper communication settings.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 211

Once you have made sure that the communication settings are properly configured, click on the
"RUN" button in the "Upload Project" windows.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 212

9.3: Setting An ISaGRAF Password
An ISaGRAF Workbench project can be password protected by configuring a user-defined
password. To configure an ISaGRAF password, open the "ISaGRAF Project Window", select
"Project" from the menu bar, and then click on "Set Password". The "Data Protection" window
will open and then select on of the passwords from "00 to 15" to configure a password (this
means that up to 16 passwords can be assigned with the ISaGRAF Workbench program).

You will also need to select the type of data protection you are creating for your ISaGRAF
project. In the example below we are defining the "Global Protection" for this ISaGRAF project.

When you click on the "OK" button from the "Enter Password" window your new password will
now be associated with the ISaGRAF project.

The next item you need to define is the type of data protection "Permissions" that will define for
your ISaGRAF project. Double click on new password you have created and the "Data
Protection Permissions" window will open. To allow full access WITH password protection,
click on the "Full Access" scroll bar and click on the new password name you have created.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 213

To verify that your password protection is now set for your ISaGRAF program, close all of
ISaGRAF windows and then open the "ISaGRAF Project Management" window. Double click
on the ISaGRAF program that you have created the password protection for. A "Data
Protection" window will now open requiring you to enter the password for the ISaGRAF
program you are attempting to open.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 214

9.4: Creating An ISaGRAF Program Diary
When you modify an ISaGRAF program you can keep track of these revisions by entering a
comment into the "Edit Diary" window. This affords the programmer the opportunity to add
comments about program modifications and then save a record of these changes using the
"Edit Diary" facility for enhanced program management capability.

When you have completed entering information in the "ISaGRAF Diary" file, just click on the
"Save" icon for your revision notes to be saved.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 215

9.5: Backing Up & Restoring An ISaGRAF Project
For archiving purposes you can "Back Up" and "Restore" an ISaGRAF project. For example,
you may want someone to test your program or email to service@icpdas.com for ICP DAS’s
ISaGRAF technical service.

Backing Up An ISaGRAF Project
Open the "ISaGRAF Project Management" window, select "Tools" from the menu bar, click on
"Archive", and then click on "Projects". An "Archive Projects" window will open which allows
you to designate where you want to save the ISaGRAF project to. Click on the name of the
ISaGRAF project you want to backup, and then click on the "Backup" button. You can
compress the size of the file you have backed up by clicking on the "Compress" checkbox
BEFORE you click on the "Backup" button.

You will now find the backed up ISaGRAF project file in the "Archive" location you have
designated. In the example above, the name of the backed up file is "simpleld.pia".

Restoring An ISaGRAF Project
To restore an ISaGRAF project from a backed up file, use the same method as above to access
the "Archive Projects" window, click on the name of the project you want to restore from the

mailto:service@icpdas.com

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 216

"Workbench" window, then click on the name of the backed up file from the "Archive" window,
then click on the "Restore" button. The ISaGRAF project will now be restored to the sub-
directory you designated.

You can now open, edit and download the restored ISaGRAF project file.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 217

9.6: Copying & Renaming An ISaGRAF Project
The ISaGRAF Workbench program has the capability of copying and renaming an ISaGRAF
project or program. This is useful if you want to maintain a copy of an ISaGRAF project or
program in a secondary directory.

Copying An ISaGRAF Program
To copy an ISaGRAF program open the "ISaGRAF Project Management" window, first click on
the name of the ISaGRAF program you want to copy, then select "File" from the menu bar, and
then click on "Copy". When you click on "Copy" the "Copy Project" window will open, and now
you can enter the name of the program you have selected to where you want to copy the
program. If the new program name does not already exist, ISaGRAF will create the project
name for you.

Note in the bottom screen that ISaGRAF has created a new program named "Scott" and placed
a copy of all the files from "simpleld" into the "Scott" program group.

Renaming An ISaGRAF Program
To rename an ISaGRAF program open the "ISaGRAF Project Management" window, click on
the name of the ISaGRAF program you want to rename, then select "File" from the menu bar,
and then click on "Rename". When you click on "Rename" the "Rename Project" window will
open, and now you can enter the new name for the ISaGRAF program.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 218

The former program named "scott" has now been changed to "gonzo", but it still has all the files
from the "simpleld" program.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 219

9.7: Setting Comment Text For An ISaGRAF Project
A useful feature of the ISaGRAF Workbench program is the ability to create "Comment Text"
that will be placed next to an ISaGRAF program name in the "ISaGRAF Project Management"
window. This way you can provide additional information about the purpose and any other
additional comments regarding a particular ISaGRAF program.

To create "Comment Text" for an ISaGRAF program first open the "ISaGRAF Project
Management" window, click on the name of the ISaGRAF program you want to create the
comment text for, then select "Edit" from the menu bar, and then click on "Set Comment Text".
When you click on "Set Comment Text" the "Project Comment Text" window will open, and now
you can enter any comments and information you desire for the ISaGRAF program you have
selected.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 220

9.8: Setting The Slave ID For An ISaGRAF Controller
Each I-8xx7, I-7188EG/XG & W-8xx7 controller system has a "NET ID" address that must be
set to identify the controller to the ISaGRAF Workbench program. By default the NET ID
address is "1" when it is shipped out.

If you need to communicate with multiple I-8xx7, I-7188EG/XG & W-8xx7 controller systems via
RS485 network, you must set the NET ID address in the ISaGRAF program for the specific I-
8xx7, I-7188EG/XG & W-8xx7 controller system you want to communicate with. To
communicate with different controller systems from one development PC open the "ISaGRAF
Programs" window and click on the "Link Setup" icon.

When you click on the "Link Setup" icon, the "PC-PLC Link Parameters" window will open.
Enter the "Target Slave Number" of the I-8xx7, I-7188EG/XG & W-8xx7 controller system you
want to communicate with.

IMPORTANT NOTE
Remember that the NET ID address of the I-8xx7 controller system is determined by the DIP
switch settings on the bottom right hand side of the controller. Refer to Section 1.3.1 for the
DIP switch settings to determine the NET ID address for the I-8xx7 controller system you want
to communicate with. To set Net-ID for the I-7188EG/XG & Wincon-8xx7, please refer to their
own “Getting Started Manual” delivered with the product.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 221

9.9: Optimizing The ISaGRAF Code Compiler
The ISaGRAF Workbench program allows you to modify the settings for the "Compiler Options"
to optimize the ISaGRAF program when you compile your project. To access the "Compiler
Options" open the "ISaGRAF Programs" window and select "Make" on the menu bar, and then
click on "Compiler Options". The "Compiler Options" window will open, and now you can select
which optimization parameters you want for when you compile your ISaGRAF program.

Selecting the "Run Two Optimizer Passes" will insure that the code is compiled into the
smallest possible program code.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 222

9.10: Using The ISaGRAF Conversion Table

Conversion Table Example
In this "Conversion Table" example the value from an I-87017 (an eight channel analog input
module) board needs to be converted. The I-87017 is configured to receive a –10v to +10v
signal, where –10v equals a value of "-32768", and a +10v signal equals a value of "+32767".
You may refer to Appendix D to see the translation table of each analog board.

In this example we will use the "Conversion Table" to reconfigure the I-87017 so that a –10v
signal will equal a value of "-10000" and a +10v signal will equal a value of "10000". In this
example a value of +2.573v signal will equal a value of "2573".

Note:
The I-8xx7, I-7188EG/XG & W-8xx7 controller only supports the value before conversion
within –32768 to +32767, and the value after conversion within –10000 to +10000. Setting
conversion table out of these range may cause errors.

To configure a "Conversion Table" open the "ISaGRAF Programs" window and click on the
"Dictionary" icon. This will open the "ISaGRAF Global Variables" window, select "Tools" from
the menu bar, and then click on "Conversion Tables".

When you click on the "Conversion Tables" selection the "Conversion Tables" window will open.
Next, click on the "New" button and then the "Create Table" window will now open. In the
"Create Table" window enter the name for the conversion table you are creating.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 223

To properly create our example "Conversion Table" at least two values must be defined. The
"Electrical" field means the original value BEFORE conversion and the "Physical" field is for the
value AFTER conversion. The two points defined in this example are (-32768, -10000 "lower
limit") and (+32767, 10000 "upper limit"). Click on the "STORE" button to save each entry.

When you have completed entering in the two value points, click on the "OK" button to save the
entered values.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 224

The last step is to assign the conversion table "CN1" to a program variable that will be used in
an ISaGRAF program.

Note:
Only integer variable declared as input or output attribution can be assigned a conversion table.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 225

9.11: Export / Import Variable Declarations Via Microsoft
Excel

Variables can be defined in Microsoft Excel and then be imported to ISaGRAF workbench. And
also they can be exported from ISaGRAF to Excel.

To export to a text file, with an extension name “.txt”, run “Tools” - “Export text” from the
“dictionary” window.

Select “File” and given a name to it, “int_1.txt” in this sample. Then click on “Browse” to select
the directory where this txt file will be saved.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 226

You may open and edit the file from the Excel. Please make sure to save this file with an
extension “.txt”.

To import a text file to ISaGRAF, with an extension name “.txt”, run “Tools” - “Import text” from
the dictionary window.

Then click on “Browse” to select the associated text file.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 227

And then it is done as below.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 228

9.12: Spy list
ISaGRAF supports “Spy list” to spy some specific variables when linking to the controller.
Please follow below steps to create a “spy list”.

First click on “Simulate”, then click on “Tools – Spy list”.

Next click on “Insert variable” to insert the variable to be spied.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 229

When all spied variables are inserted, remember to click on “Save list”.

Then close the ”Debugger” window.

Click on “Debug – Workspace”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 230

Move all “List” to the right hand side.

Then, you will see the “spy list” will automatically display when ISaGRAF linking to the
controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 231

Chapter 10: The Retained Variable And Data Backup

10.1: The Retained Variable
For some real applications, data has to be retained when the power is dead, and these data
should be restored to its last value when the power is coming up again. I-8xx7 & I-7188EG/XG
controllers (W-8xx7 doesn’t support retained variable, however it supports file operation.
Please refer to 10.5 – “Reading & Writting File”) provide battery backup memories to fit
such kind of applications. The battery used can provide the energy to keep the retained
variables alive last for some years. It also can provide the energy for the Real-Time-Clock.

A maxinum of six integers/reals (signed 32-bit) and sixteen Booleans can be retained. If the
amount of retained data is more, please refer to Section 10.3 – “Battery Backup SRAM” . If
battery backup SRAM is found in the controller (8xx7: S256/S512, 7188EG/XG: X607/X608),
the maxinum number of retained variables can be extend to 256 Boolean, 32 Timer and 256
Integer/Real.

To enable the retained function, click on “Retain” for each associated variable.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 232

10.2: Data Backup To The EEPROM
Data can be stored into the EEPROM. The value will be always hold even the power is dead
unless the value is updated. The EEPROM of I-8xx7, I-7188EG/XG & W-8xx7 controller can be
read freely however can be written only about to 100,000 times.To read a value from the
EEPROM, the following functions can be used.

To write a value to the EEPROM, should remove the protection of the EEPROM first and then
write operation is possible. The following functions can be used.

The below two blocks can be used to Read/Save “real” value . To save a Real value to the
EEPROM, use Real_Int to map the real value to an integer, and then use EEP_N_W to save
this mapped integer. To read a Real value from EEPROM, use EEP_N_R to read it, and then
use Int_Real to map this integer to an real value.

Bytes, words and integers will be stored to the same memory area in the EEPROM. Be careful
to arrange their address before using the above write functions. There are total 1,512 bytes in
the EEPROM memory area of the I-8xx7 & I-7188EG/XG, while much more in the W-8xx7.

For I-8xx7 & I-7188EG, the addressing No. of bytes is range from 1 to 1,512, while words is 1
to 756, and integers is 1 to 378. The following No. will use the same memory address in the
EEPROM.

EEP_B_R Reads one boolean
EEP_BY_R Reads one byte
EEP_WD_R Reads one word (2 bytes, signed)
EEP_N_R Reads one integer (4 bytes, signed)

EEP_EN Removes the protection of EEPROM
EEP_PR Set the protection of EEPROM
EEP_B_W Writes a boolean, up to 256 booleans can be stored.
EEP_BY_W Writes one byte, up to 1,512 bytes can be stored.
EEP_WD_W Writes one word (2 bytes, signed), up to 756 words can be stored.
EEP_N_W Writes one integer (4 bytes, signed), up to 378 integers can be stored.

Byte 4n-3, 4n-2, 4n-1, 4n (* n = 1, 2, …378 *)
Word 2n-1, 2n
Integer n

Int_Real Map a long integer to a Real value.
Real_Int Map a Real value to a long integer.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 233

For W-8xx7, the addressing No. of bytes is range from 1 to 14272, while words is 1 to 7136,
and integers is 1 to 3568. The following No. will use the same memory address in the
EEPROM.

When using the write functions, the EEPROM will be damaged if the write operation is
more than 100,000 times. For example, the following program is dangerous since the
EEPROM will be written once per cycle (normally, the cycle is about 2 to 60 ms depends on the
application) .

However the following program is safe if Val is not changed frequently.

Each read / write operation in the EEPROM will consume a lot of CPU time of I-8xx7, I-
7188EG/XG & W-8xx7 controller system. The following approximate time is for each function
being called.

Recommend to read values from the EEPROM at one time when the I-8xx7, I-7188EG/XG &
W-8xx7 is powered up, and then updated the associated address in the EEPROM when the
value is changed. Please refer to a sample program in Chapter 11 – “demo_17”. For those data
which are frequently changed are not suitable to be stored in the EEPROM.

(* ST program, Val is declared as an integer, TEMP is declared as a boolean *)
TEMP := eep_n_w(1, Val); (* dangerous *)

(* ST program, Val, Old_Val declared as integers, TEMP declared as a boolean *)
IF Val <> Old_Val THEN
 TEMP := eep_n_w(1, Val);

Old_Val := Val;
END_IF;

EEP_EN ~ 0.08 ms EEP_PR ~ 0.08 ms
EEP_B_R ~ 0.8 ms EEP_B_W ~ 6 ms
EEP_BY_R ~ 0.8 ms EEP_BY_W ~ 6 ms
EEP_WD_R ~ 1.5 ms EEP_WD_W ~ 12 ms
EEP_N_R ~ 2.9 ms EEP_N_W ~ 23 ms

Byte 4n-3, 4n-2, 4n-1, 4n (* n = 1, 2, …3568 *)
Word 2n-1, 2n
Integer n

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 234

10.3: Battery Backup SRAM
The I-8417/8817/8437/8837 can integrate with a S256 or S512 battery backup SRAM to store
data, alarm, and information, while X607 & X608 for the I-7188EG/XG controller. The data
been stored in these SRAM is always retained unless their battery running out of energy. Their
memory size is as below, however the upper 12K is reserved by ISaGRAF controllers.

I-8417/8817/8437/8837
S256: 244K bytes (256-12=244)
S512: 500K bytes (512-12=500)

I-7188EG/XG
X607: 116K bytes (128-12=116)
X608: 500K bytes (512-12=500)

If battery backup SRAM is found in the controller, the maxinum number of retained variables
can be extend to as below.

Boolean : 256
Integer + Real : 256
Timer : 32

ICP DAS provides an utility “ICPDAS UDloader” that can be installed on the PC to upload and
download data from/to the ISaGRAF controller. Please copy “UDloader.exe” from the ICP
DAS’s CD-ROM:\napdos\isagraf\some_utility\ to your windows.

The I-8417/8817/8437/8837 supports S256/S512 since its driver version of 2.25, while I-
7188EG supports X607/608 since its driver version of 1.18, and version 1.16 for I-7188XG. If
your driver is older one, please upgrade the hardware driver to the associate version or a
higher version. The driver can be found from the below ICP DAS’s web site:

http://www.icpdas.com/products/8000/isagraf.htm

The I/O library should be re-installed if yours is older one. Please refer to section 1.2.
Or you can refer to Appendix A.2 to simply install “C functions” with the below items.

S_B_R, S_B_W, S_BY_R , S_BY_W, S_M_R, S_M_W
S_WD_R, S_WD_W, S_N_R , S_N_W, S_R_R, S_R_W
S_DL_EN, S_DL_EN, S_DL_RST, S_DL_STS
S_FL_INI, S_FL_AVL, S_FL_RST, S_FL_STS, S_MV

and “I/O complex equipment” : S256_S512.

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 235

10.3.1: Access to the SRAM
The SRAM can store boolean, byte, word, integer, real & message. Their format is as below.

Boolean: True=1, False=0 1 byte
Byte: 0 ~ 255 1 byte
Word: -32768 ~ 32767 2 bytes
Integer: signed 32-bit 4 bytes
Real: float 4 bytes
Message: string (len<=255) len bytes

To access to the SRAM, the below functions can be used (Please refer to Appendix A).
S_B_R, S_B_W, S_BY_R , S_BY_W, S_M_R, S_M_W
S_WD_R, S_WD_W, S_N_R , S_N_W, S_R_R, S_R_W
S_MV

10.3.2: Upload data stored in the SRAM
For PC to upload data stored in the volatile SRAM of the ISaGRAF controllers, the SRAM
should be divided into 1 or up to 8 files. Each file has a ID No. of 1 to 8 and a name of up to 12
characters. The below functions are for handling file format inside the SRAM.

S_FL_INI, S_FL_AVL, S_FL_RST, S_FL_STS

Please use functions of S_FL_INI & S_FL_AVL to arrange the file resident location & current
available location (Please refer to Appendix A & demo_40, 41 or 42).

The volatile SRAM is consisted of bytes. The total number of bytes available depends on which
module is used as below. The upper 12K is reserved.

Module name Byte No.
I-8xx7: S256 1 ~ 249,856 (244K), (256-244=12K is reserved)
I-8xx7: S512 1 ~ 512,000 (500K), (512-500=12K is reserved)

I-7188XG/EG: X607 1 ~ 118,784 (116K), (128-116=12K is reserved)
I-7188XG/EG: X608 1 ~ 512,000 (500K), (512-500=12K is reserved)

A file can be located at any place inside these bytes. Each file’s location can be described as
(Begin, End). Begin is the lower limit byte No. of the associated file, while End is the upper limit
byte No., and Begin is always less than End.

A file inside the SRAM has a current available area (Head, Tail). Head is the starting position of
the file, Tail is the ending position. Head can be larger, less than or equal to Tail.

For ex, a file resides at (Begin, End) = (1, 20000)
1. If (Head, Tail) = (1001,5100), it means the available data of the file is starting from byte No. of

1001 to 5100. The available file contains 4100 bytes.
2. If (Head, Tail) = (10001,5000), it means the available data of the file is starting from byte No.

of 10001 to 20000 and then continued with 1 to 5000. The available file contains 15000 bytes.
3. If (Head, Tail) = (5001,5000), it means the available data of the file is starting from byte No. of

5001 to 20000 and then continued with 1 to 5000. The available file contains 20000 bytes.
4. If (Head, Tail) = (5000,5000), it means the available data of the file is empty, 0 byte.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 236

5. If (Head, Tail) = (-1,-1), it means the available data of the file is empty, 0 byte.

To upload the data stored in the SRAM, please make sure you have installed the “ICPDAS
UDloader” on your PC.

To upload data stored in the SRAM of the ISaGRAF controller to PC, please run
“UDloader.exe”, then click on “Link Setup” to set proper communication parameters, then click
on “Upload 1” to upload it.

Example:
Please download demo_41 to one I-8417/8817/8437/8837. Then push button 1 or 2 or 3 or 4
several times. Then upload the file stored in the SRAM.

File name &
location (PC).

Current available
file location.

file resident location.

Click here to set
communication parameters.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 237

10.3.3: Download data to the SRAM
For PC to download data to the volatile SRAM of the ISaGRAF controllers. The below functions
can be used. Please refer to Appendix A & demo_44.

S_DL_EN, S_DL_DIS, S_DL_RST, S_DL_STS

Please call S_DL_EN to enable it.

The Controller accepts only the binary format for String, Byte, Word, Int & Real.
Byte: 0 ~ 255 1 byte
Word: -32768 ~ +32767 2 byte [low bye] [high byte]
Int: 32-bit, signed integer 4 byte [lowest] [2nd] [3rd] [highest]
Real: 32-bit float 4 byte [lowest] [2nd] [3rd] [highest]
String: up to 255 bytes

If using the “UDloader.exe” to download data to the volatile SRAM, the data to be downloaded
should be edited as a text file. Its format should follow the below rules.

The first line should be a No. indicate that to download to which starting Byte No. of the SRAM.
Valid starting byte No is as below.

S256: 1 ~ 249,856 S512: 1 ~ 512000
X607: 1 ~ 118,784 X608: 1 ~ 512000

The other line is the data.
A. String

String should start and end with the character of ‘ , for ex. ‘Abcd123’ (7 byte). The $NN
(NN in hexidecimal and should not equal to 0), could be used to indicate the ASCII
character. For ex, ‘ABC$0D’ contains 4 bytes, the 4th byte is <CR>.

B. Byte
Byte should start with (and end with) , for ex. (0) , (123), (255). Valid byte range is from
(0) to (255).

C. Word
Word should be start with [and end with] , for ex. [-100] , [20000], [32767]. Valid word
range is from [-32768] to [32767].

D. Integer
Integer should be start with { and end with } , for ex. {-1234567} , {200000}. Valid integer
range is from {-2147483648} to {2147483647}.

E. Real
Real value should be start with < and end with > , for ex. <123> , <1.56E-2>, <-123.456>.

3. The character between each Byte, Word, Integer, Real, String at the same line should be at
least one space character <SP> or , <Comma> or, <Tab>

For ex.

201 � to download to the SRAM which staring from byte No. 201
‘Hello’ (10) (20) (30) (40) [-10000] {70000} ‘End’ � data (total 18 bytes)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 238

Example:
Please download demo_44 to one I-8417/8817/8437/8837. Then edit a text file as below.

The {1000} means the blinking period of L1 is 1000 ms.
The {250} means the blinking period of L2 is 250 ms.
The {100} means the blinking period of L3 is 100 ms. .

Then run “UDloader.exe”. You will see something change on the led of the controller.

1 � to download to the SRAM which staring from byte No. 1
(23) � data (total 57 bytes)
{-1},{2},{-3},{4},{-5},{6} {-7} {8} {-9} {10} � comma, <SP> & <Tab> are all acceptable
<0.123> <456.789> <100> , <2.3E3>

1
{1000} {250} {100} ‘sTART’

Click “Link Setup” to set proper
communication parameters.

Click “Set Load File” to indicate
which text file to operate.

Click “Download” to start to download.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 239

10.3.4: Operation Functions for the battery backup SRAM
The below functions are for the ISaGRAF controller to access to the volatile SRAM.

S_FL_INI Init one file’s name & location for the volatile SRAM
S_FL_AVL Set one file's current available byte No. for the volatile SRAM
S_FL_STS Get file's Status, end byte No. that has been load by PC for the volatile SRAM
S_FL_RST Reset file's Status to "Not been load by PC yet" for the volatile SRAM

S_B_R: Read one Boolean (TRUE, FALSE)
S_BY_R: Read one Byte (0 ~ 255)
S_WD_R: Read one Word (-32768 ~ +32767)
S_N_R: Read one Integer (32 bit, signed)
S_R_R: Read one Real (32 bit, float)
S_M_R: Read one String

S_B_W: Write one Boolean (TRUE, FALSE)
S_BY_W: Write one Byte (0 ~ 255)
S_WD_W: Write one Word (-32768 ~ +32767)
S_N_W: Write one Integer (32 bit, signed)
S_R_W: Write one Real value (32 bit, float)
S_M_W: Write one String

S_DL_EN Enable the download permission for PC to download data to the volatile SRAM
S_DL_DIS Disable the download permission for PC to download data to the volatile SRAM
S_DL_STS Get PC’s Download Status for the volatile SRAM
S_DL_RST Reset the Download Status to “-1:No action” for the volatile SRAM

10.4: Using I-8073 - MultiMediaCard to store data

The I-8073 is not support by I-8xx7, I-7188EG/XG & W-8xx7.

User

10.5: Reading & Writing File
The W-8037/8337/8737 controller system support file operation however I-8xx7 & I-
7188EG/XG doesn’t. W-8037/8337/8737 has a Compact Flah Disk with normal size of
128Mbytes (the size depends on the Compact Flash Disk been installed).

The following ISaGRAF standard functions are support by W-8xx7.

The

The

F_ROPEN Open an existing binary file in READ mode .
F_WOPEN Open an existing binary file in READ & WRITE mode .
F_CLOSE Close an open file
F_EOF Test if end-of-file has been reached
FA_READ Read one integer (4 bytes, signed) from a file.
FA_WRITE Write one integer (4 bytes, signed) to a file open with Write mode.
FM_READ Read one message (String) from a file.
FM_WRITE Write one message (String) to a file open with Write mode.
 following functions are support by W-8xx7.
F_CREAT Creat an empty file for reading & writing .
F_SEEK Move file position to …
F_READ_B Read one byte (0 - 255) from a file .
F_WRIT_B Write one byte (0 - 255) to a file open with Write mode.
F_READ_W Read one Word (-32768 to +32767) from a file .
F_WRIT_W Write one byte (-32768 to +32767) to a file open with Write mode.
F_READ_F Read one float value(For ex. 123.45, -2.15E-03, …) from a file .
F_WRIT_F Write one float value to a file open with Write mode.
’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 240

 example programs for file operation reside at the Wincon CD-ROM:

\napdos\isagraf\wincon\demo\ “wdemo_01.pia” & “wdemo_02.pia” or

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/demo/

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/demo/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 241

Chapter 11: ISaGRAF Programming Examples
When you receive the your I-8xx7, I-7188EG/XG & W-8xx7 controller system, ICP DAS has
created a number of ISaGRAF programming examples for them. These example programs are
useful for understanding how to program the controller system with the ISaGRAF Workbench
software program.

Users may refer to section 11.3 for the description of some demo examples.

11.1: Installing The ISaGRAF Programming Examples
The ISaGRAF programming examples are installed on the same CD-ROM which the “ICP DAS
Utilities For ISaGRAF” resides. The CD-ROM is delivered with the product. You will find the
programming example files in the below sub-directory in the CD-ROM.

I-8xx7: I-8000 CD-ROM: \napdos\isagraf\8000\demo\
I-7188EG: I-8000 CD-ROM: \napdos\isagraf\7188eg\demo\
I-7188XG: I-8000 CD-ROM: \napdos\isagraf\7188xg\demo\
W-8xx7: Wincon CD-ROM: \napdos\isagraf\wincon\demo\

Or you may download them from below web site:
I-8xx7 & I-7188EG: ftp://ftp.icpdas.com./pub/cd/8000cd/napdos/isagraf/
W-8xx7: ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/

When you install the ISaGRAF example for the controller system it is recommended that you
create an "ISaGRAF Project Group" to install the demo program files into.

ftp://ftp.icpdas.com./pub/cd/8000cd/napdos/isagraf/
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 242

To install the demo programs into the project you have created, open the "ISaGRAF Project
Management" window to select "Tools" from the menu bar, then select the "Archive" option and
then click on "Projects".

When you click on the "Projects" selection the "Archive Projects" window will open. Click on the
"Browse" button to select the drive and the sub-directory where the demo files are located (For
example: Napdos\ISaGRAF\8000\Demo\ on the CD-ROM) .

To install all of the Demo files, click on the "demo_01" file, then press and hold down the "Shift"
key, continue to hold down the "Shift" key and use your mouse to scroll down to last file in the
"Archive" window. Click on the last file name from the demo file location and that will select the
entire group of demo files. Lastly, click on the "Restore" button in the "Archive Projects"
window and all of the demo files will be installed into the sub-directory you have created.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 243

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 244

11.2: ISaGRAF Demo Example Files
The following details the contents of the "ISaGRAF Demo" example files for the I-8xx7 & W-
8xx7. For example of I-7188EG & I-7188XG, please refer to below folder.

I-7188EG: I-8000 CD-ROM: \napdos\isagraf\7188eg\demo\
I-7188XG: I-8000 CD-ROM: \napdos\isagraf\7188xg\demo\

For the I-8417/8817/8437/8837: I-8000 CD-ROM: \napdos\isagraf\8000\demo\
Project
Name

Description I/O Boards Or Complex
Equipment Used

Demo_01 Timer Control Push4Key,
Show3Led

Demo_01a To do something at some sec later when an event
happens

Push4Key,
Show3Led

Demo_02 Start, Stop, & Reset Timer Push4Key,
Show3Led

Demo_03 R/W System Date & Time
To output at a scheduled time interval, For ex.
Moday, 09:00 ~ 18:00, Sunday, 10:00 ~ …

NONE

Demo_04 Calculate Empty Cycle Time NONE
Demo_05 Blinking Output Push4Key,

Show3Led
Demo_06 Change Output Mode Push4Key,

Show3Led
Demo_07 Show A Value To S-MMI Push4Key,

Show3Led
Demo_08 Input A Value To S-MMI Push4Key,

Show3Led
Demo_09 Integer Calculation NONE
Demo_10 Display Analog Input Value To S-MMI I-87017,

I-87024,
Push4Key

Demo_11a Fbus Master, NET_ID = 1 Fbus_m,
Push4Key,
Show3Led

Demo_11b Fbus Slave, NET_ID = 2 Fbus_s,
Push4Key

Demo_12 Use COM3 To Receive User-Defined Command
From PC

Show3Led

Demo_13 Send User-Defined Data To PC Via COM3 Every 3
Seconds

I-87017

Demo_14 Convert I-7000 & I-87xx Protocol To Modbus
Protocol

Bus7000

Demo_15a Link To Other Modbus Devices Mbus
Demo_15b Simulate I-8417 As A Modbus Device For

Demo_15a To Link To This Project
None

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 245

Project
Name

Description I/O Boards Or Complex
Equipment Used

Demo_16 Periodic Pulse Generation, And Send Modbus
Commands To Another Controller

Push4Key,
Mbus

Demo_17 Read/Write EEPROM None
Demo_18 PID control None
Demo_19 Use retained variable to retain Integer Show3Led
Demo_20 Use retained variable to retain Timer Show3Led

Demo_21 Write one string to Com5 & Com6 Push4Key,
Show3Led

Demo_22 Receive message and echo back to Com5 or Com6 Show3Led
Demo_23 Receive a user defined protocol from PC Show3Led
Demo_27 Motion x, slot 0: i-8091,

Slot 1:i-8090,
Napdos\ISaGRAF\8000\Driver\motion.pdf

8091
I-8090
Show3Led

Demo_28 Motion x-y, slot0: i-8091, slot1: i-8090,
Napdos\ISaGRAF\8000\Driver\motion.pdf

8091
I-8090
Show3Led

Demo_29 Store 1200 short-int values every 75 sec. and then
send to PC via Com3

I-87017

Demo_30 Store 2880 short-int values every 18 sec. and then
send to PC via Com3

I-8017h

Demo_31 Press push button 1 to send an email from Com4 of
I-8xx7 controller

Push4Key

Demo_32 Press Push button 1 or 2 or 3 to send emails to two
users with multi-buffers

Push4Key

Demo_33 R/W user defined protocol via Com3 Show3Led
Demo_35a Time Synchronization : SA

Update Date & Time at this controller will sychronize
date & time at SB

Fbus_m

Demo_35b Time Synchronization : SB Fbus_s
Demo_37 Spotlight demo Push4Key

Show3Led
Demo_38 I-8xx7 talks to the MMICON : Demo 1 MMICON
Demo_39 8xx7 talks to the MMICON : Demo 2 MMICON

Demo_40 store 8 A/I (binary) to S256 per min, then PC can
load it by "ICPDAS UDloader"

I-8017h
S256_512
Show3Led

Demo_41 Record Alarm (text) to S256/512 & PC can load it by
"ICPDAS UDloader"

S256_512
Show3Led

Demo_42 store 8 A/I (text) to S256 per min, then PC can load
it by "ICPDAS UDloader"

I-8017h
S256_512
Show3Led

Demo_43 SMS demo, Please declare your own phone No. in
the dictionay, message type

SMS
Show3Led
Push4key

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 246

Project
Name

Description I/O Boards Or Complex
Equipment Used

Demo_44 Demo of PC to download data to the S256/512 Show3Led
Demo_46 Motion control:

Pulse move at a specified speed
I-8091
I-8090
Push4Key

Demo_49a Redundant: 8437/8837 redundant Master Bus7000
Ebus_m

Demo_49b Redundant: 8437/8837 redundant slave Bus7000
Ebus_s

Demo_50 PWM I/O demo. (Pulse Width Modulation) I-8055
Demo_52 Parallel D/I counter demo 1 at slot 0 (Counter Value

is retained in this demo)
I-8051
Push4Key

Demo_53 Parallel D/I counter demo 2 at slot 0 (high speed
near 1K) (Not retained)

I-8051
I-8056
Push4key

Demo_55 PWM I/O demo 2. (Pulse Width Modulation) I-8055
Demo_61 DI counters using DI_CNT, 8xx7 + 8051

Do somethig when DI signal happens
I-8051

NOTE:
Demo_18 uses PID_AL which is provided by CJ International for evaluation. Please refer to
“CD\Napdos\isagraf\8000\english_manu\ PID_AL.ComplexPIDalgorithm implementation.htm”.

Visual Basic Demo program:

I-8000 CD-ROM:\napdos\isagraf\vb_demo\ or
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/vb_demo

Project
Name

Description I/O Boards Or Complex
Equipment Used

Demo_1 PC access to I-8437/8837 by Modbus TCP/IP
protocols

I-8437/8837
I-8054

Demo_2 PC access to the remote I-8417/8817/8437/8837
via a Modem with a phone line
(Please refer to Chapter 13)

I-84x7/88x7
I-87064
Modem
Phone line

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 247

For the W-8037/8337/8737: Wincon CD-ROM: \napdos\isagraf\wincon\demo\
Project
Name

Description I/O Boards Or Complex
Equipment Used

wdemo_01 R/W float value from file

wdemo_02 R/W long integer value from file

wdemo_03 To output something at a scheduled time interval:
For ex. Moday, 09:00 ~ 18:00, Sunday, 10:00 ~ …

wdemo_04 User defined Modbus protocol (No using "Mbus")

wdemo_05 To do something at some sec later when an event
happens

i-8055

wdemo_26 To move some pulse at x-axis of i-8091 of slot 1 in
W-8337/8737

i-8091

wdemo_27 Motion x, slot 1: i-8091, slot 2: i-8090,
Napdos\ISaGRAF\8000\Driver\motion.pdf

i-8091
i-8090

wdemo_28 Motion x-y, slot1: i-8091, slot2: i-8090,
Napdos\ISaGRAF\8000\Driver\motion.pdf

i-8091
i-8090

wdemo_29 Moving to he Abs. position when CMD is given, slot
1 : i-8091, slot 2: i-8090

i-8091
i-8090

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 248

11.3: Description Of Some Demo Examples

11.3.0 Demo_01A & Demo_03: Do something at specific time

Demo_01A: Do something at some seconds later when an event happens.

Location: I-8000 CD-ROM: \napdos\isagraf\8000\demo\ “demo_01a.pia”
Variables :

Name Type Attribute Description
K1 Boolean Input push K1 to start running motor

(pushbutton 1 on the I-8xx7)
Motor Boolean Output True means to run motor, False means to stop motor
Gate Boolean Output True means to open gate, False means to close gate
M1 Boolean Internal event generated at 5 sec later when K1 is pushed
M2 Boolean Internal event generated at 15 sec later when K1 is pushed
M3 Boolean Internal event generated at 18 sec later when K1 is pushed
T1 Timer Internal Time past

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 249

Demo_03: Do something at specific weekday & some time interval

Location: I-8000 CD-ROM: \napdos\isagraf\8000\demo\ “demo_03.pia”

Variables :
Name Type Attribute Description
Year Integer Internal System year, 2001 ~
Month Integer Internal System Month, 1 ~ 12
Day Integer Internal System date, 1 ~ 31
Wday Integer Internal System Wday, 1:Monday ~ 6:Saturday, 7:Sunday
Hour Integer Internal System hour, 0 ~ 23
Minute Integer Internal System minute, 0 ~ 59
Second Integer Internal System second, 0 ~ 59
YY Integer Internal New system year to set
MM Integer Internal New system month to set
DD Integer Internal New system date to set
HH Integer Internal New system hour to set
Mn Integer Internal New system minute to set
Sec Integer Internal New system second to set
Act Boolean Internal Trigger to set new date
Act1 Boolean Internal Trigger to set new time
OK1 Boolean Internal Read back of “SYSDAT_W”
OK2 Boolean Internal Read back of “SYSTIM_W”
L1 ~ L3 Boolean Internal Simulate Boolean Output 1 to 3
Time_val Integer Internal unit is sec, = 3600 x hour + 60 x minute + sec, every day

= 0~86399

Operation action:

1. Monday ~ Saturday, L1 ~ L3, 09:00:00 ~ 18:00:00 ON
2. Sunday, L1, 13:00:00 ~ 20:00:00 ON
3. Other time, L1 ~ L3 are all OFF

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 250

Ladder program : get_time

U

ST program : control
time_val := 3600*hour + 60*minute + second; (* calculate time in sec. *)

(* set as False at the beginning of this ST program*)
L1 := False;
L2 := False;
L3 := False;

(* Monday ~ Saturday, L1 ~ L3, 09:00:00 ~ 18:00:00 ON *)
IF (Wday >= 1) AND (Wday <= 6)THEN
 IF (time_val >= 32400) AND (time_val <= 64800) THEN
 L1 := True;
 L2 := True;
 L3 := True;
 END_IF;
END_IF;

(* Sunday, L1, 13:00:00 ~ 20:00:00 ON *)
IF (Wday = 7) THEN
 IF (time_val >= 46800) AND (time_val <= 72000) THEN
 L1 := True;
 END_IF;
END_IF;
ser’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 251

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 252

11.3.1 Demo_02 : Start, Stop And Reset Timer

Location: I-8000 CD-ROM: \napdos\isagraf\8000\demo\ “demo_02.pia”

Project architecture:

Variables :

Name Type Attribute Description
M1 Boolean Internal Indicate a rising pulse of K1
M2 Boolean Internal Indicate a rising pulse of K2
M3 Boolean Internal Indicate a rising pulse of K3
K1 Boolean Input Pushbutton 1
K2 Boolean Input Pushbutton 2
K3 Boolean Input Pushbutton 3
L1 Boolean Output Output 1
L2 Boolean Output Output 2
L3 Boolean Output Output 3
T1 Timer Internal Operation timer, initial value is set at "T#0s"

LD program “prg1” :

Get rising pulse of K1, K2, K3
and save to M1, M2, & M3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 253

ST program “demo” :

(* Start timer *)
IF M1 THEN
 TSTART(T1);
END_IF;

(* Stop timer *)
IF M2 THEN
 TSTOP(T1);
END_IF;

(* Reset timer *)
IF M3 THEN
 T1 := T#0s;
END_IF;

(* Output L1 ~ L3 *)
L1 := (T1 > T#2s) AND (T1 < T#15s);
L2 := L1;
L3 := L1;

“TSTART” will start ticking the “T1” timer

“TSOP” will stop ticking “T1” timer

Reset “T1” timer to 0 sec.

“L1” will be TRUE between 2
and 15 sec of the value of “T1”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 254

11.3.2 Demo_17 : R/W Integer Value From/To The EEPROM

Location: I-8000 CD-ROM: \napdos\isagraf\8000\demo\ “demo_17.pia”

Project architecture:

Variables:

Name Type Attribute Description
V1 Integer Internal Change value of V1 to save new value to EEPROM
V2 Integer Internal
V3 Integer Internal
V4 Integer Internal
V5 Integer Internal
V6 Integer Internal
V7 Integer Internal
V8 Integer Internal
Old_V1 Integer Internal Old value of V1
Old_V2 Integer Internal
Old_V3 Integer Internal
Old_V4 Integer Internal
Old_V5 Integer Internal
Old_V6 Integer Internal
Old_V7 Integer Internal
Old_V8 Integer Internal
TEMP Boolean Internal for temporal use
INIT Boolean Internal If controller is just powered up, initial value is TRUE

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 255

ST program “st_init” :

ST program “save” :

ST program “end_init” :

if INIT=TRUE then (* First scan cycle *)
 (* Read 8 integers from EEPROM *)
 (* save them to Old_V1 ~ 8 , V1 ~ V8 *)
 Old_V1 := eep_n_r(1);
 Old_V2 := eep_n_r(2);
 Old_V3 := eep_n_r(3);
 Old_V4 := eep_n_r(4);
 Old_V5 := eep_n_r(5);
 Old_V6 := eep_n_r(6);
 Old_V7 := eep_n_r(7);
 Old_V8 := eep_n_r(8);
 V1 := Old_V1;
 V2 := Old_V2;
 V3 := Old_V3;
 V4 := Old_V4;
 V5 := Old_V5;
 V6 := Old_V6;
 V7 := Old_V7;
 V8 := Old_V8;

 (* remove protection of EEPROM *)
 TEMP := eep_en();

end if;

Read long integers stored at the
position from 1 to 8 of the eeprom
at the first scan cycle.

Init V1 to V8

Remove the protection of EEPROM, so
that it can be written later.

 (* save V1 ~ V8 to EEPROM *)
 (* You will find write to EEPROM take lots of time, about 23ms for each eep_n_w *)
 IF V1 <> Old_V1 THEN TEMP := eep_n_w(1,V1); Old_V1 := V1; END_IF;
 IF V2 <> Old_V2 THEN TEMP := eep_n_w(2,V2); Old_V2 := V2; END_IF;
 IF V3 <> Old_V3 THEN TEMP := eep_n_w(3,V3); Old_V3 := V3; END_IF;
 IF V4 <> Old_V4 THEN TEMP := eep_n_w(4,V4); Old_V4 := V4; END_IF;
 IF V5 <> Old_V5 THEN TEMP := eep_n_w(5,V5); Old_V5 := V5; END_IF;
 IF V6 <> Old_V6 THEN TEMP := eep_n_w(6,V6); Old_V6 := V6; END_IF;
 IF V7 <> Old_V7 THEN TEMP := eep_n_w(7,V7); Old_V7 := V7; END_IF;
 IF V8 <> Old_V8 THEN TEMP := eep_n_w(8,V8); Old_V8 := V8; END_IF;

The value will be saved to eeprom only
when the current value is changed.

Then update Old value to the
new value.

if INIT=TRUE then
 INIT := FALSE; (* end of first PLC scan *)
end_if;

Set “INIT” to False, so that
“INIT” is only TRUE at the first
scan cycle since it is declared
with the initial value - TRUE.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 256

11.3.3 Demo_29: Store 1200 Short Int Every 75 sec & Send To PC Via Com3

This demo program is to save the 8 analog input value (8 samples) of the I-87017 to the
short-integer array every 500ms. Then when the number of samples reach 1200, these
samples will be divided in 10 frames, each frame contain 120 samples, and sent to one PC via
COM3 (RS232/RS485).

Location: I-8000 CD-ROM: \napdos\isagraf\8000\demo\ “demo_29.pia”

Project architecture:

Variables :

Name Type Attribute Description
M Boolean Internal pulse to store a sample
M1 Boolean Internal pulse to send frame
M2 Boolean Internal To generate M1 pulse
INIT Boolean Internal If controller is just powered up, initial value is TRUE
TMP Boolean Internal For temporal use
A1 Integer Input Connect to Ch. 1 of I-87017
A2 Integer Input Connect to Ch. 2 of I-87017
A3 Integer Input Connect to Ch. 3 of I-87017
A4 Integer Input Connect to Ch. 4 of I-87017
A5 Integer Input Connect to Ch. 5 of I-87017
A6 Integer Input Connect to Ch. 6 of I-87017
A7 Integer Input Connect to Ch. 7 of I-87017
A8 Integer Input Connect to Ch. 8 of I-87017
count Integer Internal No. of sample(1~1200) that is processing, init value=1
position Integer Internal position in current short integer array, 1 ~ 256
No Integer Internal current short integer array No. which is processing
Frame_No Integer Internal only = 0 ~ 10
TMP_VAL Integer Internal For temporal use

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 257

ST program “st_init” :

LD program “Pulse” :

if INIT=TRUE then (* First scan cycle *)

 COUNT:=1; (* init count to 1 *)
 FRAME_NO:=0; (* init to 0 *)
 M2 := False; (* init M2 to false *)
 TMP:=comopen(3,9600,8,0,1);

end_if;

Open Com3 as baud=9600, char.
size=8, no parity & stop bit=1

Do some init at first scan cycle

Generate M pulse every
500 ms, M pulse is used to
record the A/I sample value

Generate M1 pulse every
500 ms when “M2” is set to
TRUE, M1 pulse is used to
send one frame to PC

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 258

ST program “Sampling” :

(* no M pulse, return *)
if M=False then
 return;
end_if;

No:=((COUNT-1)/240)+1; (* which array No *)
position:=COUNT-240*(No-1); (* which start position of the array *)

(* Store I-87017 : 8 A/I value to short integer array *)
(* Please keep in mind, the max No of short int arry can be used is 12 *)
TMP:=ary_w_w(No,position,A01);
TMP:=ary_w_w(No,position+1,A02);
TMP:=ary_w_w(No,position+2,A03);
TMP:=ary_w_w(No,position+3,A04);
TMP:=ary_w_w(No,position+4,A05);
TMP:=ary_w_w(No,position+5,A06);
TMP:=ary_w_w(No,position+6,A07);
TMP:=ary_w_w(No,position+7,A08);

if (COUNT+7 >= 1200) then
 FRAME_NO := 1; (* set FRAME_NO=1 *)
 M1 := True;
 M2 := True;
 COUNT := 1; (* reset COUNT to 1 *)
else
 COUNT := COUNT+8; (* next sampling *)
end_if;

This will make the following statement only
be processed when M pulse is generated

Get current array No. and the
start pos. of the array which the
samples will save to. Each array
can store up to 240 samples

Store I-87017 : 8 A/I value
to short integer array

If number of stored samples reach 1200,
send to PC via Com3 in 10 frames

set M1=True to send first frame at
next ST program - "SendCom"

set M2=True to generate M1 pulse at
previouse LD program - "Pulse"

If the number of stored samples
hasn’t reached 1200 yet, pulse
“COUNT” by 8 for next sampling.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 259

ST program “SendCom” :

If M1=False then
 return;
end_if;

if((FRAME_NO>=1) and (FRAME_NO<=10)) then

 No:=(FRAME_NO-1)/2+1;

 case (FRAME_NO-2*(No-1)) of
 1: position := 1;
 2: position := 121;
 end_case;

 TMP := comwrite(3,16#2); (* write one byte = STX to Com3 *)
 TMP := comwrite(3,16#10); (* write one byte = DLE to Com3 *)
 TMP := comwrite(3,FRAME_NO); (* write frame No = 1 ~ 10 to Com3 *)

 (* write 120 short integers inside the array to Com3 *)
 TMP := comay_ww(3,No,120,position);

 TMP := comwrite(3,16#3); (* write one byte = ETX to Com3 *)

 M1 := False;

 if (FRAME_NO=10) then
 FRAME_NO := 0;

M2 := False;
 else
 FRAME_NO := FRAME_NO+1; (* for next cycle *)
 end_if;

end_if;

This will make the following statement only
be processed when M1 pulse is generated

 User defined frame format : Each contains 120 short integers
 STX DLE FRAME_NO DATA ETX
 number of bytes 1 1 1 120x2 1
 value 0x2 0x10 1~10 ? 0x03

When “FRAME_NO”
is between 1 and 10

Get the short integer array No to process.
Keep in mind, each array strore up to 240
samples. (in other word -- 2 frames)

Get starting position inside the array

Send one frame via Com3

500 ms later, send next frame. “M1” will be turned ON after
500 ms later at LD program - "Pulse"

If all frames are sent, reset “FRAME_NO” to 0
, and set “M2” to FALSE to stop to generate “M1”

If some frames have not been sent yet, plus “FRAME_NO” by
1 to send next frame when next “M1” is generated

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 260

ST program “end_init” :

How to test ?

Plug one I-87017 in the slot 0 of the I-8xx7 controller.
Download Demo_29 to the controller.
Prepare a RS232 cable to connect Com3 of the controller to Com1 of your PC.
There is one ultilty named “ComTest.exe” located in the ICP DAS’s CD-ROM. Copy it to your

PC. “\Napdos\ISaGRAF\some_utility\Comtest.exe” or you may obtain it from below site.
 ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/some_utility/

Execute “ComTest” and select the parameter to “COM1” , “9600” , “No parity” , “1 stop bit” and
then click on “Open Com”.

You will receive 10 frames coming from the target controller every 75 seconds.

if INIT=TRUE then
 INIT := FALSE; (* end of first PLC scan *)
end_if;

Set “INIT” to False, so that
“INIT” is only TRUE at the first
scan cycle since it is declared
with the initial value - TRUE.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/some_utility/

User’

11.3.4 Demo_33 : R/W User Defined protocol Via Com3:RS232/RS485
This demo program can let I8417/ 8817/ 8437/ 8837 accept commands coming from PC via a
RS232 cable. The command protocol format can be defined by the user. We use the below
protocol format in this example.

Proje
Command is case insensitive, that means M1 & m1 are same

Protocol Format:

 PC req.
 M1<CR> : Change to Mode 1
 M2<CR> : Change to Mode 2
 M3<CR> : Change to Mode 3
 Txxxx<CR> : Change Period time to xxxx ms
 for ex. T250<CR> will change period time to 250ms
 Controller Ans.
 OK<CR>

 PC req.
 M?<CR> : Request the current Mode
 Controller Ans.
 Mx<CR> : for ex. M1 means Mode 1

 PC req.
 T?<CR> : Request the current Period time
 Controller Ans.
 Txxxx<CR> : for ex. T1500 means Period time is 1500ms

 Timeout:
 a valid command should be completely sent in 5 sec.
s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 261

ct architecture:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 262

Variables :

Name Type Attribute Description
L1 Boolean Output Output 1
L2 Boolean Output Output 2
L3 Boolean Output Output 3
INIT Boolean Internal If controller is just powered up, initial value is TRUE
TMP Boolean Internal For temporal use
Mode Integer Internal Operation Mode, range from 1 to 3
Step Integer Internal Processing step
NUM Integer Internal Received valid byte number
Num_com3 Integer Internal return value of Comary_R
byt Integer Internal Current operating byte
index Integer Internal Index of byte array
CMD Integer Internal command type, M, m, T, or t
TMP_val Integer Internal for temporal use
ii Integer Internal for temporal use
T1 Timer Internal Period time, valid range is 50 ~ 9999 ms
tout Timer Internal timer to measure timeout, tick when first valid byte recved

ST program “st_init” :

if INIT=TRUE then

 (* Init *)
 Mode := 1 ;
 STEP := 0 ;
 T1 := T#500ms ;
 NUM := 0 ;
 tout := T#0s ;

 (* Open Com3 as baud=9600, char. size=8, no parity & stop bit=1 *)
 TMP:=comopen(3,9600,8,0,1);

end_if;

Do some init at the first scan cycle

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 263

ST program “R_W_COM” :

(* STEP: *)
(* 0: no valid data coming *)
(* 1: first valid byte received *)
(* 2: receive '?' command *)
(* 10: check if other byte is '0' ~ '9' *)
(* 21: receive complete command *)

num_com3 := 0 ; (* reset to 0 *)
if ComReady(3) then
 num_com3 := Comary_R(3, 1) ;
end_if;

(* if data coming, process it *)
index := 1 ;
while num_com3 > 0 do

 num_com3 := num_com3-1;
 byt := array_r(1,index) ;
 index := index + 1 ;

 case STEP of
 0:
 case byt of (* check 1st byte *)
 16#4D, 16#6D, 16#54, 16#74 : (* 1st byte is valid, M, m, T, or t *)
 STEP := 1 ; (* for next STEP *)
 NUM := 1 ; (* plus valid received byte number by 1 *)
 TSTART(tout); (* start ticking tout *)
 CMD := byt ; (* record command type *)
 TMP := Array_w(2, NUM, byt); (* save 1st valid byte to byte array 2*)
 end_case;
 1:
 case byt of (* check 2nd byte *)
 16#3F : (* 2nd byte is '?' *)
 STEP := 2 ; (* for next STEP *)
 NUM := 2 ; (* plus valid received byte number by 1 *)
 TMP := Array_w(2, NUM, byt); (* save 2nd valid byte to byte array 2*)
 else
 if (CMD=16#4D or CMD=16#6D) (* cmd is M, m *)
 and (byt >= 16#31) and (byt <= 16#33) then (* '1' ~ '3' *)
 STEP := 10 ; (* for next step *)
 NUM := 2 ; (* plus valid received byte number by 1 *)
 TMP := Array_w(2, NUM, byt); (* save 2nd valid byte to byte array 2*)
 elsif (CMD=16#54 or CMD=16#74) (* cmd is T, t *)
 and (byt >= 16#30) and (byt <= 16#39) then (* '0' ~ '9' *)
 STEP := 10 ; (* for next step *)
 NUM := 2 ; (* plus valid received byte number by 1 *)

test if data coming from Com3

read all coming bytes to byte array 1

Process all coming bytes

get current operating byte from array 1

STEP 0 : check if 1st byte valid or not

STEP 1 : check if 2nd byte valid or not

User’s Manual Of ISaGRAF Embedded Controllers, Au

 TMP := Array_w(2, NUM, byt); (* save 2nd valid byte to byte array 2*)
 else
 STEP := 0 ; (* not valid data, reset STEP to 0 *)
 TSTOP(tout) ; (* stop ticking "tout" *)
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)
 end_if;
 end_case;

 2:
 if byt=16#0D then (* check 3rd byte is
 STEP := 21 ; (* complete command
 (* send answer to Com3 *)
 case CMD of
 16#4D, 16#6D : (* M or m *)
 TMP := ComWrite(3, 16#4D);
 TMP := ComWrite(3, Mode+16#30
 TMP := ComWrite(3, 16#0D);
 16#54, 16#74 : (* T or t *)
 TMP := ComWrite(3, 16#54);
 TMP := ComStr_w(3, MSG(ANA(T
 TMP := ComWrite(3, 16#0D);
 end_case ;
 else
 STEP := 0 ; (* not valid data, reset S
 TSTOP(tout) ; (* stop ticking "tout" *
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)
 end_if;

 10:
 if (byt=16#0D) then (* received <CR
 STEP := 21 ; (* complete command
 case CMD of
 16#4D, 16#6D : (* M or m *)
 Mode := Array_r(2,2)-16#30; (* Ch
 (* send answer to Com3 *)
 TMP := ComStr_w(3, 'OK');
 TMP := ComWrite(3, 16#0D);
 16#54, 16#74 : (* T or t *)
 (* get Period *)
 TMP_val := 0 ;
 for ii := 1 to NUM-1 do
 TMP_val := 10*TMP_val + (Arra
 end_for ;
 if (TMP_val >= 50) and (TMP_val
 T1 := TMR(TMP_val) ; (* Chang
 (* send answer to Com3 *)
STEP 2 : after receive 2nd byte = ‘?’ ,
check if 3rd byte is <CR>
g.

 <CR> or not *)
is received *)

 (* M *)
); (* Mode *)
 (* <CR> *)

 (* T *)
1))) ; (* Timer value *)
 (* <CR> *)

TEP to 0 *)
)

>
is

a

y_

< 1
e

Receive valid “M?” command,
reply “Mx”, x = ‘1’ ~ ‘3’

Receive valid “T?” command,
reply “Txxxx”, x = ‘0’ ~ ‘9’
STEP 10 : check 3rd and other byte
when command is “Mx” or “Txxxx”
2004, Rev. 4.0 , Copyright By ICP DAS 264

 *)
received *)

nge Mode *)

(* <CR> *)

r(2,1+ii)-16#30) ;

0000) then (* T1 must be in 50 ~ 9999 ms *)
T1 *)

Receive valid “Mx” command,
chang Mode value and reply
“OK” to PC

Receive valid “Txxx” command,
change T1 value and reply “OK”
to PC

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 265

 TMP := ComStr_w(3, 'OK');
 TMP := ComWrite(3, 16#0D); (* <CR> *)
 end_if;
 end_case ;

 elsif (byt >= 16#30) and (byt <= 16#39) then (* '0' ~ '9' *)

 STEP := 10 ; (* for next step *)
 NUM := NUM+1 ; (* plus valid received byte number by 1 *)
 TMP := Array_w(2, NUM, byt); (* save other valid byte to byte array 2*)

 if NUM>5 then (* command is too long, drop it *)
 STEP := 0 ; (* reset STEP *)
 TSTOP(tout) ; (* stop ticking "tout" *)
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)
 EXIT; (* exit while loop *)
 end_if;

 else
 STEP := 0 ; (* not valid data, reset STEP to 0 *)
 TSTOP(tout) ; (* stop ticking "tout" *)
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)

 end_if;

 end_case ;

end_while;

(* Check timeout *)
if tout > T#5s then (* if timeout *)
 STEP := 0 ; (* reset STEP *)
 TSTOP(tout) ; (* stop ticking "tout" *)
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)
end_if;

(* reset STEP to 0 *)
if STEP=21 then
 TSTOP(tout) ; (* stop ticking "tout" *)
 tout := T#0s ; (* reset "tout" *)
 NUM := 0 ; (* reset NUM *)
 STEP := 0 ;
end_if;

Receive ‘0’ ~ ‘9’, command is not completely
received yet, process next byte

Check timeout, a valid
complete command should be
received in 5 seconds

Valid command has been
processed, reset to STEP 0

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 266

SFC program “Out” :

 Each statement should end with a colon “;”

SFC child program “action1” :

If Mode = 1, run child program “action1”
If Mode = 2, run child program “action2”
If Mode = 3, run child program “action3”

Mode 1

L1, L2 & L3 set to the same value,
True or False, as SFC step 1

GT1.T > T1 means if the time has been stay in
SFC step 1 larger than Timer variable “T1”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 267

SFC child program “action2” :

SFC child program “action3” :

Mode 2

Mode 3

Action(P) :
 L1 := TRUE; L2 := FALSE;
 L3 := FALSE;
End_action ;

Action(P) :
 L1 := TRUE; L2 := TRUE;
 L3 := FALSE;
End_action ;

Action(P) :
 L1 := TRUE; L2 := TRUE;
 L3 := TRUE;
End_action ;

Action(P) :
 L1 := FALSE; L2 := FALSE;
 L3 := FALSE;
End_action ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 268

ST program “end_init” :

How to test ?

1 . Download Demo_33 to the controller.
2. Prepare a RS232 cable to connect Com3 of the controller to Com1 of your PC.
3. There is one ultilty named “ComTest.exe” located in the ICP DAS’s CD-ROM. Copy it to your

PC. “\Napdos\ISaGRAF\some_utility\Comtest.exe” or you may obtain it from below site.
 ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/some_utility/

4. You may open a “Hyper Terminal” with Com1, 9600, N, 8, 1 and “No flow control” to type the
following command to test

M2<CR> : change to mode 2
T?<CR> : request current period time
T200<CR> : change to 200ms
T1500<CR> : change to 1500ms

 M?<CR> : request current mode

 <CR> is the return char.

if INIT=TRUE then
 INIT := FALSE; (* end of first PLC scan *)
end_if;

Set “INIT” to False, so that
“INIT” is only TRUE at the first
scan cycle since it is declared
with the initial value - TRUE.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/some_utility/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 269

Chapter 12: Sending Emails

12.1: Introduction
COM4 of The I-8417/8817/8437/8837 supports full modem signals. It has embedded an email
protocol only with the driver version of “email_2.42”. It is a special driver version not the default
released one. You have to refer to Appendix C to change your controller driver version if Email
function is need. You can obtain the new released driver from:

http://www.icpdas.com/products/8000/isagraf.htm

To Send email from the controller, Com4 has to link to a modem. Com4 has exactly the same
pin assignments as the Com1 (9-pin Dsub) of the PC. The operation figure is as below.

You have to register a User-name/Password from the local ISP(Internet Service Provider). And
you have to get the ISP’s phone No. and at least one mail-server’s address near the local ISP.
For example.

User Name : David
Password : A1234
ISP’s Phone No. : 29020001
Mail server 1 : mail.seed.net.tw
Mail server 2 : mail.icpdas.com (not necessary)

COM4

Modem

Phone Line

ISP

Mail Server

Email

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 270

12.2: Programming The “Email”
The “EMAIL” block is for sending email. This section provides an demo
example to detail how to send an email to one receiver.

Parameter description:
(Name) (Type) : (Description)

ACT_ <boolean> :
if rising from false to true, start to send an email, and the return
value - STEP_ will be changed. If no sending request occurs, the
return value STEP_ will be 0 (0 means sleep)

TIMEOUT_ <integer> :
unit : seconds. The max time allowed to send an email after
linking to mail server. Value should be between 50 ~ 120 (sec).

PHONE_ <message> :
ISP's phone No. For ex. '4123000' or '0,4123000' the ',' char. will

delay 1 sec and then dial the rest No.
USER_ <message> :

Registerd user name from ISP. ex. 'Chun'
PASSWD_ <message> : Password of USER_ ex. 'abcd127'
SERVER1_ <message> : Mail server 1. ex. 'ms9.hinet.net'
SERVER2_ <message> :

Mail server 2. ex. 'mail.icpdas.com' . If only one mail server found, please set
SERVER2 as same as SERVER1

FROM_ <message> : email address of sender. ex. 'baby@icpdas.com'
TO_ <message> : email address of receiver. ex. 'father@icpdas.com'
SUBJECT_ <message> : subject of email. ex. 'Hi !'
DATA_ <message> : email message. ex. 'Dear Chun, Hello !'

return:

STEP_ <Integer> :
0 : sleep

 21 : mail successfully !

 less than 0 , error happens
 -1 : Com4 not ready
 -2 : modem not ready
 -3 : ISP doesn't pick up the phone
 -4 : ISP request to terminate
 -5 : Timeout happen
 -6 : Mail server refuse to send mail
 -7 : Can not link to mail server 1 & 2
 -8 : Can't get IP address of mail server 1 & 2

 others : reserved

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 271

Note:

1. After an email is successfully sent, if no more sending request occurs in 8 seconds, the
controller will disconnect the connection from the connected ISP and then hang off the phone .

2. If sending request occurs in 8 second After an email is successfully sent, and then again, the
max number of emails can be sent in one phone connection is 10. The other more emails
should be sent in another phone connection (In other words, re-dial).

3. If dial fail, for ex. the target phone No. is busy. The controller will dial again about one minute
later. The max re-dial number is 3 for each sending request.

An Email sample: Please refer to section 9.5 to install the demo project into your ISaGRAF. The
project file “demo31.pia” & “demo32.pia” can be found at CD-ROM:
\napdos\isagraf\8000\demo\ or

ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo

Variables declared in the sample:

Name Type Attribute Description
K1 Boolean Input Pushbutton 1, Push it to triger the “Email" block
INIT Boolean Internal initial value at “TRUE”. TRUE means 1st scan cycle
STEP Integer Internal Return value of the “Email” block
PHONE Message Internal Phone No. of ISP
USER Message Internal Registered User Name from ISP
PASSWD Message Internal Registered Password from ISP
SERVER1 Message Internal Address of mail server 1
SERVER2 Message Internal Address of mail server 2
MAIL_FROM Message Internal Mail address of sender
MAIL_TO Message Internal Mail address of receiver
SUBJECT Message Internal Subject of the email
MAIL_DATA Message Internal Content of the email

Project architecture:
st_init : a ST program to do some initial actions when the project is just beginning
Mail : a LD program to send email
End_init : a ST program to indicate the first scan cycle

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 272

ST program - “st_init” :

LD program – “mail” :

ST program – “end_init” :

(* first PLC scan, init the message variable *)

if INIT=TRUE then
PHONE := '12345678' ; (* ISP's phone No. Please given your No. *)

 USER := 'David' ; (* Registerd user name from ISP. given yours *)
PASSWD := 'abcdef' ; (* Password. Please given yours *)
SERVER1 := 'seed.net.tw' ; (* Mail server 1. Please given yours *)
SERVER2 := 'mail.seed.net.tw' ; (* Mail server 2. Please given yours *)
MAIL_FROM := 'baby@icpdas.com' ; (* Sender. Please given yours *)
MAIL_TO := 'father@icpdas.com' ; (* Receiver. Please given yours *)
SUBJECT := 'Hello !' ; (* Email subject *)
MAIL_DATA := 'Dad, I am out !' ; (* Email data *)

end_if;

(* NOTE: INIT should be declared with a initial value = TRUE in the "dictionary" window *)

if INIT=TRUE then
 INIT := FALSE ; (* end of first PLC scan *)
end_if;

Please give your correct
data

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 273

I/O connection:

Projection Operation Actions:

After compiling the project and download it to one I-8417/ 8817/ 8437/ 8837 controller, push the
first pushbutton of the front panel. You will see the modem dialling and if everything is Ok, the
email will be sent. See the return value of the “Email” block. (0 means no triggering, 21 means
Ok. Less than 0 means something wrong).

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 274

Chapter 13: Remotely Download Via Modem_Link

13.1: Introduction
COM4 of The I-8417/8817/8437/8837 & COM2 of the W-8037/8337/8737 supports full modem
signals. It has embedded the Modem_Link protocol for remotely download and monitoring
since the I-8xx7 driver version of 2.14 & W-8xx7 driver version of 3.10. Please refer to
Appendix C to make sure your I-8xx7 controller driver version is the same or higher. You can
obtain the new released driver from:

http://www.icpdas.com/products/8000/isagraf.htm

To Remotely download and monitor program via the Modem_Link, I-8xx7’s Com4 & W-8xx7’s
Com2 has to link to a modem. They have exactly the same pin assignments as the Com1 (9-
pin Dsub) of the PC.

We name the controller as “Modem Station” since it will pick up the phone call coming from the
remote PC running ISaGRAF. If the controller is either I-8437 or I-8837 (Ethernet controller),
The configuration can be extened to link many controllers together. Therefore, the PC running
ISaGRAF can remotely download to anyone of them through the modem and the Modem
station.

Note: W-8xx7’s COM2 is Modbus RTU port by default, please disable it if using as
“modem_link” port. Please refer to W-8xx7’s “Getting Started” Manual.

Phone Line

Modem
PC

ISaGRAF

Modem

Phone Line

Modem
Station

Ethernet

I-8437/ 8837

i8437/8837 Com4
W-8xx7 COM2

Or VB6
program

I-8xx7’s COM4 or
W-8xx7’s COM2

Modem

Phone Line

Modem Station
Phone Line

Modem
PC

ISaGRAF
Or VB6
program

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 275

13.2: Download Program Via Modem_Link

Warnning:
Do not download a project which uses I-8xx7’s Com4 & W-8xx7’s COM2 to do other things to
the “Modem station” controller. For ex, do not connect “Bus7000” & “Mbus” with port_no = 4 (for
I-8xx7) & port_no=2(for W-8xx7). And do not use “Comopen” to open Com4(for I-8xx7) &
Com2(for W-8xx7). It will disable “Modem_Link” if you use them for other purpose. That means,
you can not remotely connect to it.

Note: W-8xx7’s COM2 is Modbus RTU port by default, please disable it if using as
“modem_link” port. Please refer to W-8xx7’s “Getting Started” Manual.

The first thing is to add a “modem password” to your ISaGRAF program of the “Modem station”
controller for security. To do it, click on one empty slot No. from the I/O connection window.
Then connect “Modem_PS” on the slot.

Then you got the window similar as below. Type in your prefered password for the “Modem
station” controller. The password can contain up to 12 characters & can’t use character “ and ‘.
Then re-compile it and download it to the “Modem station” controller.

Note:
User can write Visual Basic program to acess to the I-8417/8817/8437/8837 & W-8xx7 via
Modem. Please download VB6 demo source code at

http://www.icpdas.com/products/8000/i-8417.htm or
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/vb_demo/ or
CD-ROM:\napdos\isagraf\vb_demo\

http://www.icpdas.com/products/8000/i-8417.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 276

Very Important:
If you don’t assign the Modem password to the “Modem station” controller, anyone who has the
phone No. of your “Modem station” controller can link to it to do anything. Be very careful.

Now we are going to download and monitor the program of faraway controllers.

Click on “Link setup”, select “Modem_Link”, and then click on “Setup”

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 277

For windows NT, 2000 & XP users:
If you are going to connect the “Modem station” controller, check “Modem station”, otherwise
check “Other IP”. “Other IP” means the target controller is not connect to a modem however
connect to the “Modem station” controller via an ethernet cable, the IP address has to be
assigned.

Then click on “debug”. Select the correct Com port of your PC which will dial the modem. And
then click on “Add Station” to add a station if you have none.

Then you will see the below window. Given a name for this new station and the target phone No.
If you add a “,” character inside the phone No. It will wait one second and then dial the rest No.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 278

For ex. Given No. as “9,,22570001” will dial “9” first, then wait 2 seconds and then dial
“22570001”. The password must set to the same password of the “modem station” controller.

Click on the station you would like to connect first and then click on “Connect to Station” to
command the modem dialing to the faraway controller.

After the connection is Ok. You can download, monitor and change the variable value just like
you did when the controller is near beside you.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 279

To disconnect from the target controller, close the “ … Debugger” window. Then you can
choose “No” to keep the phone connected, or “Yes “ to hang off phone.
If you choose to keep the phone connected, you can open another ISaGRAF project to directly
connect to another faraway target. The modem won’t dial again.

However, keep in mind, remember to disconnect the modem_link when you finish your work,
don’t waste the money to the telecom company.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 280

For windows 95 & 98 users:
Given the correct target phone No. and the correct Com port of your PC which will dial the
modem. If you add a “,” character indise the phone No. It will wait one second and then dial the
rest No. For ex. Given No. as “9,,22570001” will dial “9” first, then wait 2 seconds and then dial
“22570001”. The password must set to the same password of the “modem station” controller. If
you are going to connect the “Modem station” controller, check “Modem station”, otherwise
check “Other IP”. “Other IP” means the target controller is not connect to a modem however
connect to the “Modem station” controller via an ethernet cable, the IP address has to assign.

Then click on “debug” to start dialing the modem to connect to the faraway controller.

After the connection is Ok., you can download a new program, monitor the variable status just
like you did when the controller is near beside you.

When you close the “ … Debugger” window, the PC will command the modem to hang off the
phone and disconnect with the faraway controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 281

Note:
The Modem_Link software installed on windows 95 & 98 doesn’t support “keep the phone
connected” function. That means each time you close the “ … Debugger” window, the phone
will be hanged off too. So next time when click on “debug”, you will see the modem dialing
again to conect to the faraway controller.
For Windows NT, 2000 and XP users, the modem will not dial if you keep the phone connected.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 282

Chapter 14: Spotlight : Simple HMI
Spotlight is a simple HMI coming with ISaGRAF which allows user to build Boolean Icon, Bar
Graph, Trend Curve, Value Text, Bitmap Picture to make application more friendly.

14.1 A Spotlight Example:
This Demo example can be restored from the ICP DAS’s I-8000 CD-ROM - “demo_37” (For I-
8xx7). Please refer to Chapter 11 to restore it.

Variables used In the example:

Name Type Attribute Description
INIT Boolean Internal Only = TRUE at the 1st scan cycle, INIT value is TRUE
L1 Boolean Output Output 1, connect to Ch1 of “show3led”
L2 Boolean Output Output 2, connect to Ch2 of “show3led”
L3 Boolean Output Output 3, connect to Ch3 of “show3led”
Button1 Boolean Inpput Input 1, connect to Ch1 of “push4key”
Button2 Boolean Inpput Input 2, connect to Ch2 of “push4key”
Button3 Boolean Inpput Input 3, connect to Ch3 of “push4key”
Button4 Boolean Inpput Input 4, connect to Ch4 of “push4key”
VAL_OUT Integer Internal to set blinking period, initial value is set at 500 (unit:ms)
T1 Timer Internal Time Period of blinking
MSG1 Message Internal Status report, please set its Maxinum Length to 48

HMI screen outline:

User’s M

Project architecture:

ST Program “st_init” in the “Begin” area :

ST Pro

Group name: Spotlight

project name: demo_37
(* Do some init action *)
if INIT=TRUE then
 T1 := TMR(VAL_OUT); (* Convert integer:VAL_OUT to Timer:T1 in ms *)
 MSG1:='OK.';
 OLD_VAL_OUT := VAL_OUT; (* init OLD value *)
end_if;

(* if set a new value to VAL_OUT *)
if VAL_OUT <> OLD_VAL_OUT then

 (* VAL_OUT is acceptable *)
 if (VAL_OUT>=200) & (VAL_OUT<=5000) then
 T1 := TMR(VAL_OUT); (* Convert integer:VAL_OUT to Timer:T1 in ms *)
 MSG1:='OK.';
 else (* VAL_OUT out of range *)
 MSG1:='VAL_OUT should be between 200 and 5000 .';
 end_if;

 OLD_VAL_OUT := VAL_OUT; (* update OLD value *)

end_if;
anual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 283

gram “end_init” in the “End” area :

INIT := FALSE ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 284

LD Program “Demo” in the “Begin” area:

Operations :
The status of four push buttons will be displayed on the HMI screen
The first output will be blinking with the period defined by “VAL_OUT” in ms
Value of “VAL_OUT” can be modified from the HMI screen
The second and third output “L2” & “L3” can be controlled by the HMI screen.
The Value of “VAL_OUT” will also be displayed on the front panel of the controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 285

Steps to build a Spotlight: HMI screen:

Complete this Demo project as described above.
After you finish it. Compile it to make sure there is no error.

Copy all files inside “ICO” folder to the associate directory of your project.
The “ICO” folder contains some boolean icon files already bulit by ICP DAS. They can be found
from the ICP DAS’s CD-ROM : \napdos\isagraf\ICO\

For example, this demo project is inside group “spotligh” and the project name is “demo_37”,
then copy CD-ROM: \napdos\isagraf\ICO*.* to c:\isawin\spotligh\demo_37\

If the “ICO” folder is not found in your CD-ROM. Please download it from the below site.
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/

Get into the Spotlight editor.
Click on “Simulate”, then click on “Spotlight” to open spotlight editor.

A “SpotLight” window will appear as below.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 286

Add “boolean Icons”
Click on “Boolean icon”, then set the associated Name as “Button1”, Caption as “Name”, Align
as “Top” and then set the prefered *.ico file to display with “FALSE” and “TRUE”, and un-check
“Command variable”.

Then drag the boolean icon to appropriate place.

Click to set the *.ico file to
display. If ico files are not
found, please refer to step 2.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 287

Check on the new created boolean icon, copy it(Ctrl+c) and then paste it (Ctrl+v) to reproduce
one another boolean icon. Then drag it to the prefered place.

Check on the new created boolean icon, then click the right button of the mouse, select “Set
item style” to modify the name to “Button2”.

click the right button of
the mouse.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 288

Then we have …

Follow the same method to create 4 boolean icons as below. Recommand to save it anytime for
safety. Given a name to this screen.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 289

We need one another Boolean icon to display the status of “L1”. Create it with a different color
(TRUE : “YEL_ON2.ico” , FALSE : “YEL_OFF2.ico”).

And then create L2 & L3 with TRUE:”CMD_ON2.ico” and FLASE: “CMD_OFF2.ico” as below.
Save it anytime, L2 & L3 should not un-check “Command variable”.

Keep it checked for L2 & L3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 290

Add “Unipolar bargraph”
Click on “Unipolar bargraph”, set the associated Name as “VAL_OUT”, Scale as “5000”, Color
as blue, Back as gray, Direction as “To the right”, Caption as “Name=Value”, Align as “Top”,
and un-check “Command variable”

Click and hold on the left button of the mouse to change to the prefered shape as below. Save
it anytime.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 291

Add “Single text”
Click on “Single text”, set the associated Name as “VAL_OUT”, Caption as “Name”, Align as
“Top”

Move it to the prefered place and save it.

Keep it checked for
VAL_OUT

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 292

Click on “Single text” again, set the associated Name as “MSG1”, Caption as “None”, Align as
“Left” and un-check “Command variable”.

Move it to the prefered place and save it.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 293

Add “Curve”
Click on “Curve”, set the associated Name as “VAL_OUT”, Scale as “5000”, Color as red, Back
as gray, Caption as “Name”, Align as “Top”, and un-check “Command variable”

Click and hold on the left button of the mouse to change to the prefered shape as below. Save
it anytime

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 294

Add “picture”
Please build 2 bitmap pictures by MS painter as below. Then save them respectively with file
names of “sp2.bmp” & “ms.bmp” to the associate project directory. (For this example
“c:\isawin\spotligh\demo_37\”)

Click on “Picture”, Select the associate bmp file name.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 295

Add 2 pictures “sp2.bmp” and “ms.bmp” to the prefered place, then we got the below window.
Click on “Lock” to protect it (No modification allowed). Save it anytime.

Add the HMI screen to the “Workspace”
Quit “simulation”, then run “Debug”-“Workspace”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 296

Move the HMI screen to the right (Workspace).

J. Time to download to the controller and test
Click on “Debug” to download the project to the controller and test it. You may double click on
“L2”, “L3” or “VAL_OUT” to modify the value and see what it happens on the controller. And
also you can press the 4 pushbuttons on the controller.

OK.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 297

You may double click on “VAL_OUT” and give a value large than 5000 to see what it happens.

Note: For quick response, user may click on “Options” – “Parameters”, and then set the “Cyclic
refresh duration to a smaller value. (Recommand not to set below 200 ms)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 298

Chapter 15: Creating User-Defined Functions
ISaGRAF supoorts functions written in ST, FBD, IL and QLD languages. User-defined
functions are normally for some algorithm which been used again and again.

A function always has an return value (output parameter) and its name should be the same
name as the function, and may have up to 31 input parameters. The code written inside
functions can not call any function block, however can call other ISaGRAF standard
functions and c functions provided by ICP DAS.

We are going to creating a function to save an integer value to the EEPROM. Its format is as
the below.

Function name : W_EEP
Description: Save an integer to the EEPROM when its value changed
Input parameters:

ADDR_ (integer) : the address of the EEPROM to write
V1_ (integer) : New value
V2_ (integer) : Old value

Return parameter:
W_EEP (integer): return the new value

Note: The parameter names been used will become reserved names. That’s why we use
ADDR_ , V1_ , V2_ rather than ADDR , V1 & V2.

15.1: Creating functions inside one project
Functions created inside one project can be only called by other programs written in the same
project.

A. Click on “Create new program” inside the project. Given Name as “W_EEP”, Language as
“ST:…”, Style as “Function”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 299

B. Double click on the function to get into it. Then click on “Sub-program parameters” to define
input and output parameters.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 300

C. Declare local variables. We need a local boolean internal variable “TMP” in this example.

D. Enter function codes.

E. Verify the function.

IF V1_ <> V2_ THEN (* if value changed *)
 TMP := EEP_N_W(ADDR_, V1_); (* save it to the EEPROM *)
 W_EEP := V1_ ; (* return the new value *)
END_IF ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 301

F. Call it in other programs in the same project.

Global variables used in the project:
Name Type Attribute Description
INIT Boolean Internal initial value at “TRUE”. TRUE means 1st scan cycle
K1 Boolean Input Connect to 1st ch. Of “push4key”, press it to get “Val”
New_Val Integer Internal New value wish to save to the EEPROM
Old_Val Integer Internal Old value
Val Integer Internal Read back value of the EEPROM

Project architecture:

ST program – “end_init” in the “End” area :

LD program – “demo” :

IF INIT=TRUE THEN
INIT := FALSE ;

END_IF ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 302

G. Set Compiler Options and compile the project.

After download to the controller, you may change the “New_Val”, and then press “K1” to see
what it happens.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 303

15.2: Creating functions in the library
Functions created in the library can be called by programs in any project.

The steps is similar to the former section 15.1. Please refer to it in advance.

A. Get into the library. Then click on “Functions”

B. Create an new function and given Name as “W_EEP_N” , Language as “Structured Text”.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 304

C. Define input and return parameters

D. Add codes.

IF V1_ <> V2_ THEN (* if value changed *)
 TMP := EEP_N_W(ADDR_, V1_); (* save it to the EEPROM *)
 W_EEP_N := V1_ ; (* return the new value *)
END_IF ;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 305

E. Declare local variables. We need a boolean internal variable – “TMP”

E. Save the function and set compiler options.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 306

E. Verify the function.

Then you can call it in any project.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 307

Chapter 16: Linking MMICON
The I-8417/8817/8437/8837, I-7188EG, I-7188XG & W-8xx7 controller can integrate the ICP
DAS’s MMICON to become their Man Machine Interface. The MMICON is featured with a 240 x
64 dot LCD and a 4 x 4 Keyboard. User can use it to display picture, string, integer, float, and
input a character, string, integer and float. All control logic is written in ISaGRAF program.

16.1: Hardware Installation
Please refer to the “MMICON Hardware Manual” which is delivered with the hardware for more
hardware details.

1. The MMICON has a COM port. Please set as a RS232 port. (Please look at the jumper “J7”
& “J8” setting on the hardware).

Pin assignment :

I-8417/8817/8437/8837: COM3 & COM4 can be used. W-8xx7: COM2 can be used

I-7188EG/XG: COM3 can be used. (COM3 is added on X503 ~ X51x board)

2. Please set Jumper “J2” of MMICON to position “INIT”. I-8417/8817/8437/8837, I-
7188EG/XG & W-8xx7 only support COM parameter “9600, 8, N, 1” and “address = 0” to talk to
the MMICON.

I-8xx7 (COM4)
W-8xx7 (COM2)

2 TXD
3 RXD
5 GND

MMICON (CN3)
RS232

2 RXD
3 TXD
5 GND

I-8xx7 (COM3)
RS232

3 TXD
2 RXD
5 GND

MMICON (CN3)
RS232

2 RXD
3 TXD
5 GND

I-7188EG/XG
RS232

TXD
RXD
GND

MMICON (CN3)
RS232

2 RXD
3 TXD
5 GND

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 308

16.2: Create Background Picture Of the MMICON
Please refer to the “MMIDOS Software User Manual” which is delivered with the hardware for
more software details.

The number of the background pictures depends on the ROM memory on the MMICON. It can
up to 256 pages for EPROM like “27040”, and 128 pages for “27020”, and 64 pages for
“27010”.

Note: ROM/ EPROM/ EEPROM/ FLASH are all validate.

Please Install the “MMICON” folder from the CD-ROM: \Napdos\others\mmicon\ to your hard
disk. Or download folder “MMICON “at
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/others/mmicon/

Note: Please change all these file’s attribute : removing “Read-only”

Create all the background pages by Microsoft painter (Please refer to “P0.bmp”).
Edit your “Autox.dat” file (Please refer to “Auto1.dat”). This file must remove its “Read-only”

attribute.
Run “MMIDOS.exe” to build the “romx.bin”, For ex. “rom1.bin”
Using your ROM programmer to burn this “romx.bin” image to the ROM memory. Then plug it

into the socket on the MMICON.

Please refer to the “MMIDOS Software User Manual” which is delivered with the hardware for
more software details.

16.3: Writing Control program
The I/O complex equipment “mmicon” should be connected to the I/O connection window first.
You can find 3 boards under “MMICON”.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/others/mmicon/

User’s Manua

Status:
Parameter “com_port” defines the COM No. to link to the MMOCON. 3 or 4 for I-8xx7,
while 2 or 3 for I-7188EG/XG & 2 for W-8xx7
1 channel of Digital Input: True means communication between the controller and the
MMICON is Ok. FALSE means fail.

Key_in:
1 channel of Integer Input: The value is the key been pressed. And the value will last
only for one scan cycle, then go back to 0.

Key Key code value Key Key code value
0 16#30 Enter 16#0D
1 16#31 . 16#2E
2 16#32 Left 16#1B
3 16#33 Right 16#1A
4 16#34 Up 16#18
5 16#35 Down 16#19
6 16#36 Back space 16#08
7 16#37 F1 16#F1
8 16#38 F2 16#F2
9 16#39 F3 16#F3
A 16#41 F4 16#F4
B 16#42
C 16#43
D 16#44
E 16#45
F 16#46

Page_out:
1 channel of Integer Output: The value output define the page No. to display.

The I-8417/8817/8437/8837, I-7188EG, I-7188XG & W-8xx7 controller provide below functions
to control the action of the MMICON.

Please refe
MI_BOO Display a boolean value as “ON” or “OFF”
MI_INT Display an integer value
MI_REAL Display a real value
MI_STR Display a string
MI_INP_N To enter an integer
MI_INP_S To enter a string
REAL_STR Convert a real value to a string
STR_REAL Convert a string to a real value
l Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 309

r to I-8xx7’s demo_38, dem_39 and Appendix A.4

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 310

7188EG/XG:COM3/4
RS232

RXD
TXD
GND

GSM cable of
GM29

2 TXD
3 RXD
5 GND

Chapter 17: SMS: Short Message Service
The I-8417/8817/8437/8837, I-7188EG, I-7188XG & Wincon-8xx7 controller can integrate with
a GSM Modem to support SMS: Short Message Service. This allows user to request
information or control something from his own cellular phone to the ISaGRAF controller. Beside,
the controller can also send information and alarms to user’s cellular phone.

17.1: Hardware Installation
The I-8417/8817/8437/8837 supports SMS since its driver version of 2.24, while version 1.14
for I-7188EG, and version 1.12 for I-7188XG, and version of 3.10 for W-8xx7. If your driver is
older one, please upgrade the hardware driver to the associate version or a higher version. The
driver can be found from the below ICP DAS’s web site:

http://www.icpdas.com/products/8000/isagraf.htm

The I/O library should be re-installed if yours is older one. Please refer to section 1.2.
Or you can refer to Appendix A.2 to simply install “C functions” with the below items.

SMS_test, SMS_get, SMS_gets, SMS_send, SMS_sts
and “I/O complex equipment” : SMS.

The GSM Modem GM29 (900/1800) is recommanded for the ISaGRAF controller since its
driver version of I-8xx7:2.47, I-7188EG:1.38, I-7188XG:1.35 & Wincon-8xx7:3.10. You may
purchase them from ICP DAS or from your local agent. ICP DAS is not sure for other GSM
modems working or not.

Note: Please REMOVE the password setting in SIM card , then plug it into GSM modem.

 4 DTR ------------- 4 DSR DTR (or RTS) ------------- 4 DSR
 7 RTS ------------- 7 CTS DTR (or RTS) ------------- 7 CTS

I-8xx7(COM4/5)
W-8xx7(COM2)

2 RXD
3 TXD
5 GND

GSM cable of
GM29

2 TXD
3 RXD
5 GND

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 311

17.2: A SMS demo example
The demo project is located at I-8xx7’s demo_43, please refer to section 11.1 to install it to your
ISaGRAF workbench. Or It can be download at ICP DAS’s ftp site.

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo/

Variables :
Name Type Attribute Description
M1 Boolean Internal Trigger to send an alarm message when K1 is pushed
M2 Boolean Internal Trigger to send a report message when a message is

coming
K1 Boolean Input Pushbutton 1, connect to push4key
L1 Boolean Output Output 1, connect to show3led
L2 Boolean Output Output 2, connect to show3led
L3 Boolean Output Output 3, connect to show3led
Q1 Boolean Internal Test if message is coming
TMP Boolean Internal Temportary usage
SMS_available Boolean Input is SMS available ? connect to SMS - status
T1 Timer Internal Blinking time of L1 to L3, init at T#500ms
data Message Internal The coming Message
phone Message Internal phone No. of sender
Date_time Message Internal Message coming date & time in string format
To_who Message Internal phone No of receiver, please use your own No.
Msg_to_send Message Internal Message to send out
Year1 Integer Internal Message coming year
Mon1 Integer Internal Message coming month
Day1 Integer Internal Message coming date
Wday1 Integer Internal Message coming week date
Hour1 Integer Internal Message coming hour
Min1 Integer Internal Message coming minute
Sec1 Integer Internal Message coming second
Q1_cnt Integer Internal Message coming count, declared as retained variable
Msg_status Integer Internal Message sending status
TMP_v Integer Internal temportary usage

Project architecture :
Operation actions:
1. If K1 is pushed, an Alarm
message will be sent.
2. If the user send a message in
format, for ex. T0200 or T1500
to the controller, the blinking
period will change to 200ms and
1500ms. And then the controller
will response a report message
back to the user.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 312

I/O connection:

LD program : work

Trigger to send an alarm message when K1 is pushed

Get message Sending status every scan cycle

Blink outputs

Message coming count, Q1_cnt
is declared as retained variable

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 313

ST program : rcv_msg

Q1 := SMS_test();

if Q1 then

 Year1 := SMS_get(1);
 Mon1 := SMS_get(2);
 Day1 := SMS_get(3);
 Wday1 := SMS_get(4);
 Hour1 := SMS_get(5);
 Min1 := SMS_get(6);
 Sec1 := SMS_get(7);

 phone := SMS_gets(2);
 date_time := SMS_gets(3);

 data := SMS_gets(1);

 if mid(data,1,1) = 'T' then

 TMP_v := ANA(mid(data,4,2));

 (* valid format *)
 if TMP_v>=50 and TMP_v<=9999 then
 T1 := TMR(TMP_v); (* convert to timer *)

 Msg_to_send := 'Current T1 change to ' + Msg(TMP_v) + ' ms.';
 M2 := TRUE;

 else (* invalid format*)

 Msg_to_send := '!!! Wrong command, Val should be between T0050 to T9999. Current T1
remains at ' + Msg(Ana(T1)) + ' ms.';
 M2 := TRUE;

 end_if;

 end_if; (* if mid(data,1,1) = 'T' then *)

end_if; (* if Q1 then *)

call SMS_get to get message
coming date & Time in integer format

Test if a message is coming or not

if a message coming

get phone No. of sender

get message coming date & time in string format

get message data, SMS_gets(1) should be called in the
last one, because it will reset SMS_test status to
FALSE:No message coming

Check the coming message. For ex. T1500 will result T1=1500 ms, while
T0300 result T1=300ms, however TAB10 will result T1=0 ms (not valid)

check 1st char is T or not

extract 4 bytes starting from string position 2,
and then convert to an integer

Trigger to send a report message to sender

Trigger to send a report message to sender

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 314

ST program : snd_msg

More description of SMS_sts, SMS_send, SMS_test, SMS_get & SMS_gets, Please refer to
ISaGRAF’s On-line Help. “Library” – “C functions” – “SMS_xxxx”

if (Msg_status <> 1) and SMS_available then

 if M1 then (* alarm triggering *)

 TMP := SMS_send(to_who,'K1 is pushed!');
 M1 := FALSE;

 elsif M2 then (* Report triggering *)

 TMP := SMS_send(phone,Msg_to_send); (* report message back *)
 M2 := FALSE;

 end_if;

end_if;

if message sending status is not 1:busy

Must disable it (set to FALSE)
after SMS_send is called

 Message sending status:
 0: waiting for a new sending request
 1: busy. (message is processing now)
21: The message is sent successfullly
 -1: SMS system is not available
-2: Timeout, No response.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 315

Chapter 18 : Motion

18.1: Install motion driver

Limitation:
1. I-8437/8837 CAN NOT do ethernet communication when using I-8091 to do motion control,
while W-8337/8737 doesn’t have this limitation.
2. Only one I-8091 board in I-8417/8817/8437/8837 & W-8337/8737 can do X-Y dependent
motion, other I-8091s should be moving independent. Or all I-8091s are moving independent.

The I-8417/8817/8437/8837 & Wincon-8337/8737 can integrate with the I-8091 to do Motion
control. The default ISaGRAF driver burned in the Flash memory of the I-8417/8817/8437/8837
controller is for general usage not for motion control. Please update it to the motion driver by
yourself. While user don’t need to upgrade the driver of Wincon-8337/8737 if its driver version
is 3.08 or higher.

The motion driver of I-8417/8817/8437/8837 can be found in the ICP DAS CD-ROM.
napdos\isagraf\8000\driver\motion?.??\

or can be downloaded from
ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/driver/ motion?.??

Please refer to the “ReadMe.txt” in the folder of “motion?.??” (for ex. “Motion2.45”)

Restriction of the motion driver of I-8417/8817/8437/8837:
The motion driver for I-8417/8817/8437/8837 doesn’t support the Ethernet communication,
however W-8337/8737 desen’t have this limitation.

The ISaGRAF demo projects of motion for I-8417/8817/8437/8837 are “demo_27” , “demo_28”,
& “demo_46”. They are located in the 8000 CD-ROM: napdos\isagraf\8000\demo\” , or from

ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/demo/

The ISaGRAF demo projects of motion for W-8337/8737 are “wdemo_26” , “wdemo_27”,
“wdemo_28” & “wdemo_29”. They are located in the Wincon CD-ROM:

napdos\isagraf\wincon\demo\” , or from
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/demo/

ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/driver/
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/driver/
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/demo/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 316

All functions that trigger I-8091 & I-8090 are named as ”M_???” , Please refer to the On-line
help from the ISaGRAF “Help” – “Library” - “C functions” for names starting with “M_???”.

Beside, please refer to “I-8091 & I-8090 User’s Manual” .It can be found in the package box of
the i-8091, or
CD-ROM: napdos\8000\motion\i8091\manual\
ftp site: ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/8000/motion/i8091/manual/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 317

18.2: Introduction

18.2.1: System Block Diagram
The I-8091 stepping motor control card is a micro-computer controlled, 2-axis pulse generation
card. It includes a 2Kbytes-FIFO to receive motion command from host, a micro-computer for
profile generation and protection, 2-axis DDA chip to execute DDA function when interpolation
command is used, 2500Vrms optical isolation inserted for industrial application.

2K FIFO

Interface

CPU DDA Chip

X-axis

DDA Chip

Y-axis

Optical
Isolation

Limit Switch

Input Port

Connector
Limit Switch Signal

 Profile Generation

 Protection

Limit Switch

Input Port

Bus

Fig.(1) block diagram of I-8091 card

18.2.2: DDA Technology
The DDA chip is the heart of I-8091 card, it will generate equal-space pulse train corresponding
to specific pulse number during a DDA period. This mechanism is very useful to execute pulse
generation and interpolation function. The DDA period can be determined by DDA cycle.
Table(1) shows the relation among DDA cycle, DDA period and output pulse rate. When DDA
cycle set to 1, the DDA period is equal to (1+1)x1.024ms = 2.048ms. The output pulse number
can be set to 0~2047, therefore the maximum output pulse rate will be 1Mpps. The minimum
output pulse rate is 3.83pps when set DDA cycle=254 (DDA period = (254+1)x1.024ms =
261.12ms).

Fig.(2) DDA mechanism

DDA cycle

X pulse =

Y pulse = 6

Z pulse = 4

DDA period

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 318

Table(1) The Relation among DDA cycle, DDA period and output pulse rate.
DDA cycle DDA period Max. pulse

rate(n=2047)
Min. pulse rate (n=1)

1 2.048ms 999511pps 488pps
2 3.072ms 666341pps 325pps
3 4.096ms . .
. . . .
N (N+1)*1.024ms 2047/(DDA period) 1/(DDA period)
. . . .
254 261.12ms 7839pps 3.83pps

The DDA cycle can be set by i8091_SET_VAR() command which decribed in charpter 3. The
selection criterion of DDA cycle was described as following.

1. The required max. output pulse rate.

PRmax = Vmax*N/60

PRmax =
2047

1 1 024() * .DDAcycle ms+

PRmax : max. output pulse rate.

Vmax : max. speed (rpm).

N : the pulse number of stepping motor per revolution (pulse/rev).

2. The required speed resolution.
The maximum output pulse number is Np(0~2047), therefore the speed resolution is
Vmax(max. speed)/Np. The DDA cycle can be obtained by following equation.

PRmax =
Np

DDAcycle ms() * .+1 1 024

3. When choose large DDA cycle (DDA period), it will occur vibration between different pulse
input which generally can be observed during acceleration or deceleration. So, the small DDA
cycle , the smooth acceleration/deceleration curve as long as the speed resolution is
acceptable.

Example: Stepping Motor
The spec. of stepping motor is 500 pulse/rev, max. speed 500 rpm, speed resolution 2 rpm.

The required max. pulse rate
PRmax = 500 rpm*500/60 = 4166.67 pps

The maximum output pulse
Np = 500rpm/2rpm =250 pulse number

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 319

The DDA cycle can be calculated by follow equation

PRmax =
Np

DDAcycle ms() * .+1 1 024

4166.67 =
250

1 1 024() * .DDAcycle ms+
DDA cycle = 58
High Speed = 247 pulse (4166.67*58*0.001024)

The above results means that maximum speed is 500rpm when send command
i8091_SET_VAR(0, 58, 2, 2, 247) to I-8091 card.

Example: Pulse type input Servo Motor
The spec. of servo motor is 8000 pulse/rev, max. speed 3000 rpm, speed resolution 2 rpm.

The required max. pulse rate
PRmax = 3000 rpm*8000/60 = 400,000 pps

The maximum output pulse
Np = 3000rpm/2rpm =1500 pulse number

The DDA cycle can be calculated by follow equation

PRmax =
Np

DDAcycle ms() * .+1 1 024

400,000 =
1500

1 1 024() * .DDAcycle ms+
DDA cycle = 3
High Speed = 1638 pulse (400,000*4*0.001024)

The above results means that maximum speed is 3000rpm when send command
i8091_SET_VAR(0, 3, 2, 2, 1638) to I-8091 card.

18.3: Hardware

18.3.1: I-8000 hardware address
The hardware address of I-8000 main system is fixed as following table. There are 4 slots I-
8000 and 8 slots I-8000.

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7
I-8000, 4 slot
address

0x080 0x0A0 0x0C0 0x0E0 --- --- --- ---

I-8000, 8 slot
address

0x080 0x0A0 0x0C0 0x0E0 0x140 0x160 0x180 0x1A0

Fig.(3) I-8000 hardware address

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 320

18.3.2: LED Indicator

Fig.(4) I-8091 LED indicator

18.3.3: Hardware Configuration

Limit switch configuration
Because the profile generation and protection is executed by the CPU on I-8091 card, the limit
switches must configure as following diagram. The motion command just can work properly.

LS11 ORG1 LS14

CW/FWCCW/BW

Motor

EXT GND

/LS11

/LS14

/ORG1

X axis/EMG

Emergency

ccm

Fig.(5) Limit switch configuration of X axis

power

/ORG1 /LS11 /LS14 /ORG2 /LS21 /LS24 /EMG

/ORG1: X-axis’s original limit switch
for machine home position.

/LS11, /LS14 : X-axis’s negative
and positive limit switches.

/ORG2: Y-axis’s original limit switch
for machine home position.

/LS21, /LS24 : Y-axis’s negative
and positive limit switches.

/EMG : system’s emergency signal
input.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 321

LS21 ORG2 LS24

CW/FWCCW/BW

Motor

EXT GND

/LS21

/LS24

/ORG2

Y axis

ccm

Fig.(6) Limit switch configuration of Y axis

Output pulse mode configuration
I-8091 card provide two kind output method.

(a) CW/CCW mode
(b) Pulse/Direction mode

The command M_s_mode(card_NO_, modeX_, modeY_) provide parameters 0: CW_CCW
and 1: PULSE_DIR to define output pulse mode.

CW

CCW

Pulse

Direction
Mode = 1 (PULSE_DIR)

Mode = 0 (CW_CCW)

Fig.(7) Output pulse mode

Direction configuration

Sometimes, the output direction of X-axis, Y-axis is not in the desired direction due to the
motor’s connection or gear train. It is recommended to unify the output direction as shown in
Figure(5)(6). The CW/FW direction is defined as toward outside from motor and the CCW/BW
direction is defined as toward inside to motor. The M_s_dir(card_NO_, defdirX_, defdirY_)
command provides parameters 0: NORMAL_DIR and 1:REVERSE_DIR to define the rotating
direction of motor.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 322

Turn Servo ON/OFF (Hold ON/OFF)

To turn servo motor into servo ON(OFF) state, or turn stepping motor into hold ON(OFF) state,
the command M_s_serv(card_NO_, sonX_, sonY_) provide parameters 1:ON and 0:OFF to
turn ON or OFF.

Automatic protection

The I-8091 card has a automatic protected system.

(a) If X-aixs command is executing and moving toward CW/FW direction, X-axis will
immediately stop when LS14 is touched. To release this protection as long as X-axis move
toward CCW/BW direction.

(b) If X-aixs command is executing and moving toward CCW/BW direction, X-axis will
immediately stop when LS11 is touched. To release this protection as long as X-axis move
toward CW/FW direction.

(c) If Y-aixs command is executing and moving toward CW/FW direction, Y-axis will
immediately stop when LS24 is touched. To release this protection as long as Y-axis move
toward CCW/BW direction.

(d) If Y-aixs command is executing and moving toward CCW/BW direction, Y-axis will
immediately stop when LS21 is touched. To release this protection, as long as Y-axis move
toward CW/FW direction.

(e) If the signal of the emergency limit switch /EMG was found in CPU firmware, all motion will
be terminated and stop.

Set limit switch as normal close condition

The limit switches /EMG, /LS11, /LS14, /LS21, /LS24, /ORG1, /ORG2 is initially normal open
condition, that is, these signal is active when connect it to ground. In industrial application, it
might be recommended normal close condition, that is, these signal is active when open from
ground.
The M_s_nc(card_NO_, sw_) command can be set sw=0 (default), for normal open condition.
When set sw=1, for normal close condition.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 323

18.3.4: Pin assignment of connector CN2

EXT_GND

EXT_VCC (12~24V)

GND

+5V

CN2
DB25M-90

13
25
12
24
11
23
10
22
9

21
8

20
7

19
6

18
5

17
4

16
3

15
2

14
1

LS24

ORG2

CCW_DIR2

CW_PULSE2
CW_PULSE1

LS14

HOLD1

LS21
LS11

HOLD2

EMG

CCW_DIR1

ORG1

Fig.(8) CN2 connector of I-8091

Table of CN2 connector’s pin assignment
pin name pin

number
Description

+5V 1 Internal +5V power, Max. output current: 50mA
CW_PULSE1 2 X-axis CW (Pulse) output pin
CCW_DIR1 3 X-axis CCW (Direction) output pin
HOLD1 4 X-axis HOLD (servo on) output pin
GND 5 Signal ground of pin 2,3,4
EXT_VCC 6 External power(12~24V) for limit switches
/ORG1 7 X-axis original (home) limit switch
/LS11 8 X-axis limit switch

9,10 No used
/LS14 11 X-axis limit switch
/EMG 12 Emergency input
EXT_GND 13 External ground for limit switch
+5V 14 Internal +5V power, Max. output current: 50mA
CW_PULSE2 15 Y-axis CW (Pulse) output pin
CCW_DIR2 16 Y-axis CCW (Direction) output pin
HOLD2 17 Y-axis HOLD (servo on) output pin
GND 18 Signal ground of pin 15,16,17
EXT_VCC 19 External power(12~24V) for limit switches
/ORG2 20 Y-axis original (home) limit switch
/LS21 21 Y-axis limit switch

22,23 No used
/LS24 24 Y-axis limit switch
EXT_GND 25 External ground for limit switch

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 324

The internal circuit of CW_PULSE, CCW_DIR, HOLD

When output these signal as 1, it can source 15mA(max.).
When output these signal as 0, it can sink 50mA(max.)

+5V

330

CW_PULSE1
CCW_DIR1
HOLD1
CW_PULSE2
CCW_DIR2
HOLD2

Fig.(9) internal circuit of pulse output pin

The internal circuit of limit switch input

Initially, the limit switch inputs of I-8091 board are normal open (N.O.), the I-8091 board will
automatic protect when limit switch pin connect to EXT_GND. The user can use the command
M_s_nc(card_NO_, 1) to let those limit switch input as normal close condition at the beginning
of the user’s program.

EXT_VCC (12V~24V)

4.7K

/ORG1, /LS11, /LS14

/ORG2, /LS21, /LS24

/EMG

Fig.(10) internal circuit of limit switch input pin

i8091

i8091

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 325

Example of connection

FAN-OUT TYPE (VEXTA) DRIVER

+5V

+5V

+5V

DGND

HOLD1

CW_PULSE1

CCW_DIR1

GND

CW +

CW -

CCW +

CCW -

HOLD +

HOLD -

6
5
4

1

3

6
5
4

1

3

6
5
4

1

3

1 4

2 3

1 4

2 3

1 4

2 3

Fig.(11) fan-out type driver (VEXTA's motor driver)

SINK TYPE DRIVERDGND

+5V

+5V

+5V

GND

CCW_DIR1

HOLD1

CW_PULSE1

COM

CW/PULSE

CCW/DIR

HOLD

6
5
4

1

3

1 4

2 3

6
5
4

1

3

6
5
4

1

3

1 4

2 3

1 4

2 3

Fig.(12) Sink type driver

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 326

(12V~24V)

S8090 cardS8091 card

EXT_VCC 2B-

3B-

3A+

1A-

2C-

EGND

3B+

2C+

2A+

E5V

3A-

2B+

3C-
3C+

2A-

E5V

EGND

E5V

EXT_GND

EXT_VCC

S5V

SGND

CW_PULSE2
CCW_DIR1

EGND

1A+

CW_PULSE1 1B+

CCW_DIR2

EGND

1B-

1C-
1C+

HOLD1
HOLD2

PHOME1

PLS24

PHOME2

PLS14

PLS21

PEMG

PLS11

CN2
DB25M-90

13
25
12
24
11
23
10
22

9
21

8
20

7
19

6
18

5
17

4
16

3
15

2
14

1

CN2
DB25M-90

13
25
12
24
11
23
10
22
9

21
8

20
7

19
6

18
5

17
4

16
3

15
2

14
1

Fig.(13) The connection between I-8090 and I-8091 for function testing or pulse feedback by
I-8090 encoder card.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 327

18.4: Software

I/O connection:

The “I-8091A” connectted on the I/O connection window contains 11 digital input channels.

I-8090 contains 3 analog input channels.

Parameter:
 x_mode : integer counting mode of X-axis
 y_mode : integer counting mode of Y-axis
 z_mode : integer counting mode of Z-axis
 00: quadrant counting mode
 10: CW/CCW counting mode
 20: pulse/direction counting mode

Input Channel:
 CH1 : encorder value of X-axis
 CH2 : encorder value of Y-axis
 CH3 : encorder value of Z-axis

CH1 to CH3 are signed 32-bit integer format

Input Channel:
CH1 : EMG, emergency stop
CH2 : /FFEF, FIFO is empty or not, TRUE: empty
CH3 : /FFFF, FIFO is full or not, TRUE: full

CH4 : LS11, Left limit swtch of X-axis
CH5 : LS14, Right limit swtch of X-axis
CH6 : ORG1, Original position swtch of X-axis
CH7 : XSTOP, Stop or not of X-axis, TRUE: stop

CH8 : LS21, Left limit swtch of Y-axis
CH9 : LS24, Right limit swtch of Y-axis
CH10 : ORG2, Original position swtch of Y-axis
CH11 : YSTOP, Stop or not of Y-axis, TRUE: stop

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 328

Setting commands:

M_regist Register one I-8091

In order to distinguish more than one I-8091 card in I-8417/8817/8437/8837
platform, the I-8091 cards should be registrated before using it. This command
will assign a card number = “card_NO_” to I-8091 card at that “address_” . If
there is no I-8091 at the given address, this command will return FALSE.

Note: If using “I_8091A” rather than “I_8091” on the I/O connection window, user don’t
need to call “m_regist” & “m_s_nc”, they are ignored. The card_NO of “I-8091A” is
equal to its slot No. I-8xx7: 0 ~ 7. W-8xx7: 1 ~ 7.

Parameters:
card_NO_ integer valid is 0 ~ 19.
address_ integer the plugged slot address of the i8091 card

 slot 0: 16#80
 slot 1: 16#A0
 slot 2: 16#C0
 slot 3: 16#E0
 slot 4: 16#140
 slot 5: 16#160
 slot 6: 16#180
 slot 7: 16#1A0

Return:
Q_ boolean TRUE: Ok , FALSE: Fail

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

 (* declaration: INIT as boolean <internal> and has initial value of TRUE *)
(* TMP as boolean <internal> *)

 (* cardNO as integer <internal> and has intial value of 1 *)
(* Do some init setting at 1st scan cycle *)
if INIT then

 INIT := FALSE;
 TMP := M_regist(cardNO,16#80); (* plug i8091 in slot 0 *)
 TMP := M_r_sys(cardNO); (* reset i8091's setting *)
 TMP := M_s_var(cardNO,4,2,5,100);
 TMP := M_s_dir(cardNO,0,0); (* Normal direction *)
 TMP := M_s_mode(cardNO,1,1); (* pulse_dir mode *)
 TMP := M_s_serv(cardNO,1,1); (* X & Y server ON *)
 TMP := M_s_nc(cardNO,0); (* Normal open *)

end_if;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 329

M_r_sys Reset all setting

To reset I-8091 card, this command will terminate the running command in
I-8091 card. User can use this command as software emergency stop. This
command also will clear all of setting, so, all I-8091 card’s parameter should
be set again.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 330

Default value
DDA_cycle = 10
Acc_Dec = 1
Low_Speed = 10
High_Speed = 100

M_s_var Set motion system parameters

To set DDA cycle, accelerating/decelerating speed, low speed and high
speed value.

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
DDA_cycle_ integer DDA cycle , valid is 1 ~ 254
Acc_Dec_ integer Acc/Dec speed , valid is 1 ~ 200
Low_Speed_ integer low speed , valid is 1 ~ 200 , Low_Speed_ >= Acc_Dec_
High_Speed_ integer high speed , Low_Speed_ <= High_Speed <= 2047

Return:
Q_ boolean always return TRUE.

Note:
The lower “DDA_cycle_” is given, the smaller delay time between /ORG1 ON and /X_STOP
ON (or /ORG2 ON and /Y_STOP ON) when using M_hsporg & M_lsporg command. For ex,
DDA_cycle_ set to 4, the delay time is about 5 to 13 ms.

High_Speed

Acc_Dec Acc_Dec Low_Speed

Restriction:
1 254
1 200
1 200

2047

≤ ≤
≤ ≤
≤ ≤

≤ ≤

DDA cycle
Acc Dec
Low Speed

Low Speed High Speed

_
_
_

_ _
Low_Speed >= Acc_Dec

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

 TMP := M_s_var(1, 5, 2, 10, 150);
(* DDA_cycle = 5 --> DDA period = (5+1)*1.024ms = 6.144ms
 Acc_Dec = 2 --> Acc/Dec speed = 2/(6.144ms)^2 = 52981 p/s^2
 Low_Speed = 10 --> low speed = 10/6.144ms = 1628pps
 High_Speed = 150 --> high speed = 150/6.144ms = 24414pps *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 331

M_s_dir Define output direction of axes

Sometimes, the output direction of X-axis, Y-axis is undesired direction due to
the motor’s connection or gear train. In order to unify the output direction as
shown in Fig.(5) and Fig.(6). Where CW/FW direction is defined as toward
outside from motor, CCW/BW direction is defined as toward inside from motor.
This command provide parameters to define the rotating direction of motor.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
defdirX_ integer X axis direction definition , valid is 0 ~ 1
defdirY_ integer Y axis direction definition , valid is 0 ~ 1

 0: normal direction, 1: reverse direction

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_s_mode Set output mode

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
modeX_ integer X axis mode, valid is 0 ~ 1
modeY_ integer Y axis mode, valid is 0 ~ 1

 0: CW_CCW, 1: PULSE_DIR

Return:
Q_ boolean always return TRUE.

CW

CCW

Pulse

Direction
Mode = 1 (PULSE_DIR)

Mode = 0 (CW_CCW)

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 332

M_s_serv Set servo ON/OFF

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
sonX_ integer X axis servo/hold on switch , valid is 0 ~ 1
sonY_ integer Y axis servo/hold on switch , valid is 0 ~ 1

 0: OFF, 1: ON

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_s_nc Set N.O. / N.C.

To set all of the following limit switches as N.C.(normal close) or N.O.(normall
open). If set as N.O., those limit switches are active low. If set as N.C., those
limit switches are active high. The auto-protection will automatically change
the judgement whatever it is N.O. or N.C..

Limit switches: ORG1, LS11, LS14, ORG2, LS21, LS24, EMG.

Note: If using “I_8091A” rather than “I_8091” on the I/O connection window, user don’t
need to call “m_regist” & “m_s_nc”, they are ignored. The card_NO of “I-8091A” is
equal to its slot No. I-8xx7: 0 ~ 7. W-8xx7: 1 ~ 7.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
sw_ integer 0: N.O. (default) , 1: N.C.

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 333

Stop commands:

M_stpx Stop X axis

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_stpy Stop Y axis

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_stpall Stop X & Y axes

This command will stop X & Y axes and clear all of commands pending in the FIFO.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 334

Simple motion commands:

M_lsporg Low speed move to ORG

Low speed move , and stop when ORG1/ORG2 limit switch is touched.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
DIR_ integer 0: CW , 1: CCW
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

ORG

Low speed

M_hsporg High speed move to ORG

High speed move , and stop when ORG1/ORG2 limit switch is touched.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
DIR_ integer 0: CW , 1: CCW
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

ORG

high speed

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

Note:
The lower “DDA_cycle_” is given, the smaller delay time between /ORG1 ON and /X_STOP
ON (or /ORG2 ON and /Y_STOP ON) when using M_hsporg & M_lsporg command. For ex,
DDA_cycle_ set to 4, the delay time is about 5 to 13 ms.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 335

M_lsppmv Low speed pulse move

Low speed move a specified “pulse”

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
AXIS_ integer 1: X axis , 2: Y axis
Pulse_ integer number of pulse to move. if > 0, move toward CW/FW dir.

if < 0, move toward CCW/BW dir.

Return:
Q_ boolean always return TRUE.

#pulseN

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_hsppmv High speed pulse move

High speed move a specified “pulse”

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
AXIS_ integer 1: X axis , 2: Y axis
Pulse_ integer number of pulse to move. if > 0, move toward CW/FW dir.

if < 0, move toward CCW/BW dir.

Return:
Q_ boolean always return TRUE.

high speed

#pulseN

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 336

M_nsppmv Normal speed pulse move

Normal speed move a specified “pulse”

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
AXIS_ integer 1: X axis , 2: Y axis
Pulse_ integer number of pulse to move. if > 0, move toward CW/FW dir.

if < 0, move toward CCW/BW dir.
SPEED_ integer Speed, low speed <= SPEED_ <= high speed

Return:
Q_ boolean always return TRUE.

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_lspmv Low speed move

Low speed move toward the direction specified. It can be stop by M_stpx or
M_stpy or M_stpall command

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
DIR_ integer direction. 0: CW , 1: CCW
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

Low speed

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 337

M_hspmv High speed move

High speed move toward the direction specified. It can be stop by M_stpx or
M_stpy or M_stpall command

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
DIR_ integer direction. 0: CW , 1: CCW
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

high speed

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_cspmv Change speed move

This command will accelerate/decelerate the selected axis’s motor to the
“move_speed”. This command can be continuously send to I-8091 to
dynamicly change speed. The rotating motor can be stop by the command
M_stpx, M_stpy, M_stpall, or M_slwstp

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
dir_ integer direction. 0: CW , 1: CCW
axis_ integer 1: X axis , 2: Y axis
move_speed_ integer 0 < move_speed_ <= 2040

Return:
Q_ boolean always return TRUE.

move speed
Acc_Dec

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 338

M_slwdn Slow down to low speed

To decelerate to slow speed until M_stpx or M_stpy or M_stpall is executed.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

SLOW_DOWN

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

M_slwstp Slow down to stop

To decelerate to stop.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
AXIS_ integer 1: X axis , 2: Y axis

Return:
Q_ boolean always return TRUE.

SLOW_STOP

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 339

Interpolation commands:

M_intp Move a short distance on X-Y plane

This command will move a short distance (interpolation short line) on X-Y plane.
This command provided a method for user to generate an arbitrary curve on
X-Y plane.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
Xpulse_ integer -2047 <= Xpulse_ <= 2047
Ypulse_ integer -2047 <= Ypulse_ <= 2047

Return:
Q_ boolean always return TRUE.

X

Y

(Xpulse,Ypulse)

X

Y

1

2
3 4

5 6 7

8

9

10

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

NOTE:
For a lot of M_intp call set at the same time, please check if the FIFO is not full. Call it if FIFO is
not full. FIFO indicator is a Digital Input resides at CH3 of i-8091.

i-8091 D/I channel on ISaGRAF I/O connection window:

 CH1 : EMG, emergency stop
 CH2 : /FFEF, FIFO is empty or not, TRUE: empty
 CH3 : /FFFF, FIFO is full or not, TRUE: full

 CH4 : LS11, Left limit swtch of X-axis
 CH5 : LS14, Right limit swtch of X-axis
 CH6 : ORG1, Original position swtch of X-axis
 CH7 : XSTOP, Stop or not of X-axis, TRUE: stop

 CH8 : LS21, Left limit swtch of Y-axis
 CH9 : LS24, Right limit swtch of Y-axis
 CH10 : ORG2, Original position swtch of Y-axis
 CH11 : YSTOP, Stop or not of Y-axis, TRUE: stop

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 340

M_intln Move a long distance on X-Y plane

This command will move a long distance (interpolation line) on X-Y plane. The
CPU on I-8091 card will generate a trapezoidal speed profile of X-axis and
Y-axis, and execute interpolation by way of DDA chip.

Parameters:
card_NO_ integer the card No. has been set by M_regist, valid is 0 ~ 19
Xpulse_ integer -524287 <= Xpulse_ <= 524287
Ypulse_ integer -524287 <= Xpulse_ <= 524287

Return:
Q_ boolean always return TRUE.

X

Y

(0,0)

(Xpulse,Ypulse)

Example: I-8417/8817/8437/8837: demo_46, demo_27, demo_28
 W-8337/8737: wdemo_26, wdemo_27, wdemo_28, wdemo_29

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 341

M_intln2 Move a long distance on X-Y plane

This command will move a long interpolation line on X-Y plane. It will
automatically generate a trapezoidal speed profile of X-axis and Y-axis by
state-machine-type calculation method.

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
x_, y_ integer end point relate to present position
speed_ integer 0 ~ 2040
acc_mode_ integer 0: enable acceleration/deceleration profile

 1: disable acceleration/deceleration profile

Return:
Q_ boolean always return TRUE.

X

Y

(0,0)

(X,Y)

NOTE:
1. Only one of M_intln2, M_intcl2 & M_intar2 command can be called at one time, the other
motion moving commands related to the same I-8091 card should not be called unless it is
completed. (Please use M_intstp to test command of M_intln2, M_intcl2 & M_intar2
completed or not).
2. One controller can only drive one I-8091 to move by M_intln2 , M_intcL2 , M_intar2
command. Two or more I-8091 cards in the same controller to use M_intln2 , M_intcL2 ,
M_intar2 at the same time is not possible.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 342

M_intcl2 Move a circle on X-Y plane

This command will generate an interpolation circle on X-Y plane. It will
automatically generate a trapezoidal speed profile of X-axis and Y-axis by
state-machine-type calculation method.

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
x_, y_ integer center point of circle relate to present position
dir_ integer moving direction. 0: CW , 1: CCW
speed_ integer 0 ~ 2040
acc_mode_ integer 0: enable acceleration/deceleration profile

 1: disable acceleration/deceleration profile

Return:
Q_ boolean always return TRUE.

X

Y

(X,Y)

CCW

CW

where radius = sqrt(X^2 + Y^2)

NOTE:
1. Only one of M_intln2, M_intcl2 & M_intar2 command can be called at one time, the other
motion moving commands related to the same I-8091 card should not be called unless it is
completed. (Please use M_intstp to test command of M_intln2, M_intcl2 & M_intar2
completed or not).
2. One controller can only drive one I-8091 to move by M_intln2 , M_intcL2 , M_intar2
command. Two or more I-8091 cards in the same controller to use M_intln2 , M_intcL2 ,
M_intar2 at the same time is not possible.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 343

M_intar2 Move a arc on X-Y plane

This command will generate an interpolation arc on X-Y plane. It will
automatically generate a trapezoidal speed profile of X-axis and Y-axis by
state-machine-type calculation method.

Parameters:
card_NO_ integer the card No. has been set by M_regist,

valid is 0 ~ 19
x_, y_ integer end point of arc relate to present position
R_ integer radius of arc, if > 0, the arc < 180 degree,

if < 0, the arc > 180 degree
R_ must > (square root of (X_*X_+Y_*Y_)) / 2

dir_ integer moving direction. 0: CW , 1: CCW
speed_ integer 0 ~ 2040
acc_mode_ integer 0: enable acceleration/deceleration profile

 1: disable acceleration/deceleration profile

Return:
Q_ boolean always return TRUE.

NOTE:
1. Only one of M_intln2, M_intcl2 & M_intar2 command can be called at one time, the other
motion moving commands related to the same I-8091 card should not be called unless it is
completed. (Please use M_intstp to test command of M_intln2, M_intcl2 & M_intar2
completed or not).
2. One controller can only drive one I-8091 to move by M_intln2 , M_intcL2 , M_intar2
command. Two or more I-8091 cards in the same controller to use M_intln2 , M_intcL2 ,
M_intar2 at the same time is not possible.

R dir path of curve
R>0 CW 'B'
R>0 CCW 'C'
R<0 CW 'A'
R<0 CCW 'D' X

Y (X,Y)

CCW

CW

CW

CCW

'A'

'B'

'C'

'D'

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 344

M_intstp Test X-Y plane moving command

To test the below 3 commands completed or not.

 M_intln2 , M_intcL2 , M_intar2

It will return FALSE for interpolation command completed while return TRUE for busy - not
completed yet.

Return:
Q_ boolean TRUE: busy , FALSE: completed

NOTE:
1. Only one of M_intln2, M_intcl2 & M_intar2 command can be called at one time, the other
motion moving commands related to the same I-8091 card should not be called unless it is
completed. (Please use M_intstp to test command of M_intln2, M_intcl2 & M_intar2
completed or not).
2. One controller can only drive one I-8091 to move by M_intln2 , M_intcL2 , M_intar2
command. Two or more I-8091 cards in the same controller to use M_intln2 , M_intcL2 ,
M_intar2 at the same time is not possible.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 345

I-8090 encorder commands:

M_r_enco Reset I-8090’s encorder value to 0

Parameters:
slot_ integer the slot No. where the i8090 is plugged, 0 ~ 7
axis_ integer 1: x-axis, 2: y-axis, 3: z-axis

Return:
Q_ boolean always return TRUE.

Example: demo_27, demo_28, demo_46

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 346

Chapter 19: Ethernet Communication and Security
The major t topics of this chapter are:

1.W-8037/8337/8737 communicate to Expansion Modbus TCP/IP I/O, and W-8037/8337/8737
communicate to remote PCs and workstations via TCP & UDP. Will be available at:
 ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/ “eth_io.pdf”

 Note: I-8xx7 & I-7188EG/XG doesn’t support this function.

2. Modbus TCP/IP security for I-8437/8837, 7188EG & W- W-8037/8337/8737. Will be
available at ICP DAS’s Ftp site.
ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/english_manu/ “eth_security.pdf” or
ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/ “eth_security.pdf”

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/
ftp://ftp.icpdas.com/pub/cd/8000cd/napdos/isagraf/8000/english_manu/
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 347

Chapter 20: C Interface
This chapter details how to link user’s own c routines with the ISaGRAF driver of
Wincon-8037/8337/8737.

Note: I-8xx7 & I-7188EG/XG doesn’t support this function.

This chapter will be available from the ICP DAS’s Ftp site.
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/ “c_interface.pdf”

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 348

Chapter 21: Web Server For The Wincon-8xx7
This chapter details how to use Wincon-8037/8337/8737 as a web server. This will enable
other PCs to access to the W-8xx7 via IE browser (Internet Explorer).

Note: I-8xx7 & I-7188EG/XG doesn’t support this function.

This chapter will be available from the ICP DAS’s Ftp site.
ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/ “web_server.pdf”

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 349

Chapter 22: VB.net V.S. The Wincon-8xx7
This Chapter lists how to program VB.net application running in W-8xx7 to exchange data with
the ISaGRAF application running in the same W-8xx7.

Please refer to Wincon CD-ROM.
Wincon CD-ROM: \napdos\isagraf\wincon\english_manu\ “VB.net_link_w8337.pdf”

Or ICP DAS’s Ftp site.
ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/
“VB.net_link_w8337.pdf”

ftp://ftp.icpdas.com./pub/cd/winconcd/napdos/isagraf/wincon/english_manu/

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 350

Appendix A: ISaGRAF Functions & Function Blocks
For The I-8xx7, I-7188EG/XG & W-8xx7 Controller

Appendix A.1: Standard ISaGRAF Function Blocks
The following details the standard ISaGRAF function blocks that that can be programmed with
the I-8xx7, I-7188EG/XG & W-8xx7 controller however labeled with “*” & “#” is not supported
by I-8xx7 & I-7188EG/XG, while W-8xx7 doesn’t support items with “#” label only.

- #ARWRITE *F_ROPEN MSG SHR
& (AND) ASCII F_TRIG MUX4 SIG_GEN

 * ASIN *F_WOPEN MUX8 SIN
 / ATAN *FA_READ Neg SQRT
 + AVERAGE *FA_WRITE NOT_MASK SR
 < BLINK FIND ODD STACKINT
 <= BOO *FM_READ #OPERATE #SYSTEM
 <> CAT *FM_WRITE OR_MASK TAN
 = CHAR HYSTER POW TMR

=1 (XOR) CMP INSERT R_TRIG TOF
 > COS INTEGRAL RAND TON
 >= CTD LEFT REAL TP

>=1 (OR) CTU LIM_ALRM REPLACE TRUNC
1 gain CTUD LIMIT RIGHT XOR_MASK
ABS #DAY_TIME LOG ROL
ACOS DELETE MAX ROR
ANA DERIVATE MID RS
AND_MASK EXPT MIN SEL
#ARCREATE *F_CLOSE MLEN SEMA
#ARREAD *F_EOF MOD SHL

Please refer to the on-line help from the ISaGRAF workbench.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 351

The function blocks listed in section A.4 are created by ICP DAS exclusively for the I-8xx7, I-
7188EG/XG & W-8xx7 controller system. After installing the “ICP DAS Utilities For ISaGRAF”
(please refer to section 1.2), these blocks in section A.4 can be found in the ISaGRAF
Workbench program. Please refer to section A.4 for the "List Of Blocks" created for the
controller system.

ICP DAS continually strives to improve the functionality of the I-8xx7, I-7188EG/XG & W-8xx7
controller system and the ISaGRAF Workbench program. Please visit the ICP DAS web site at
http://www.icpdas.com/products/8000/isagraf.htm for updates and additions of new function
blocks and functions created for the controller system.

Please refer to section A.2 for more information on how to "Add New Blocks one by one To The
ISaGRAF Workbench" program. (Section 1.2 is to install all of them at once)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 352

Appendix A.2: Adding New Function Blocks To ISaGRAF
To add or update functions or function blocks one by one for the ISaGRAF Workbench program,
click on the Windows "Start" menu, select "Programs", select "ISaGRAF 3.4", then click on
"Libraries" to begin installing or updating ISaGRAF functions or function blocks.

When you click on "Libraries" the "ISaGRAF Libraries" window will open. To add a new
function block or function select "Tools" from the menu bar and then click on "Archive".

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 353

Click on the file name you want to "Archive" and then click "Browse" button to select the sub-
directory to where (CD_ROM\Napdos\ISaGRAF\ARK\) you want to archive the function block
library to.

Select the new function block in the "Archive" window that you want to add, and then click on
the "Restore" button. When you click on the "Restore" button the function block will be added to
the ISaGRAF Workbench window.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 354

Appendix A.3: I-8xx7 & I-7188EG/XG’s 7-Segment LED
Reference Table
The following table provides the reference definitions for programming the 7 LED indicators on
the I-8xx7 & I-7188EG/XG controller system.

LED 6: Set to TRUE to display ":" (colon):
LED 7: Set to TRUE to display "." (period above LED 4)

Display Table: LED 1 Through LED 5
Displayed

Char.
Given
Value

Displayed
Char.

Given
Value

Displayed
Char.

Given
Value

0 0 4. 20 r 40
1 1 5. 21 L 41
2 2 6. 22 n 42
3 3 7. 23 y 43
4 4 8. 24 U 44
5 5 9. 25 P 45
6 6 A. 26 o 46
7 7 b. 27 r. 47
8 8 C. 28 n. 48
9 9 d. 29 y. 49
A 10 E. 30 h. 50
b 11 F. 31 L. 51
C 12 32 U. 52
d 13 33 P. 53
E 14 ¯ 34 o. 54
F 15 _ 35 −. 55
0. 16 H 36 ¯. 56
1. 17 h 37 _. 57
2. 18 H. 38 r Others
3. 19 . 39

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 355

Appendix A.4: Function Blocks For The Controller
The following function blocks have been developed specifically for the I-8xx7, I-7188EG/XG &
W-8xx7 controller system.

ARRAY_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values for the I-8xx7 &

7188EG/XG is from 1 to 24. For W-8xx7 is 1 to 48.
ADR_ integer address in the array where the byte is to be stored, for the I-8xx7 &

7188EG/XG is from 1 to 256. For W-8xx7 is 1 to 512.
DATA_ integer the byte value returned

Example:

Description:
Function Read one byte from a byte array

Save 4 hexadecimal
values of 41, 42, 43,
44 to address 1 to 4 of
No. 5 array. TMP is
declared as a boolean.

Read 4 bytes from
address 1 to 4 of
array No. 5 and write
them to COM3.
ii is declared as an
integer variable

Goto step 2 after 1 sec
to write to COM3
again.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 356

ARRAY_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values for the I-8xx7 &

7188EG/XG is from 1 to 24. For W-8xx7 is 1 to 48.
ADR_ integer address in the array where the byte is to be stored, for the I-8xx7 &

7188EG/XG is from 1 to 256. For W-8xx7 is 1 to 512.
DATA_ integer the byte value to be saved to, valid range values from 0 to 255.
Q_ boolean if OK. return TRUE, else return FALSE

Example: Refer to the “ARRAY_R” example.

Description:
Function Save one byte to a byte array

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 357

ARY_F_R
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values is from 1 to 18.
ADR_ integer address in the array where the integer is to be stored, valid range

values from 1 to 256
DATA_ real the float value returned

ARY_F_W
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values is from 1 to 18
ADR_ integer address in the array where the integer is to be stored, valid

range values from 1 to 256
DATA_ real the float value to be saved to.
Q_ boolean if OK. return TRUE, else return FALSE

Note: The datas stored in array are cleared after power off

Description:
Function Read one float value (32-bit format) from an float array

Description:
Function Save one float value (32-bit format) to an float array

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 358

ARY_N_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values for the I-8xx7 & I-

7188EG/XG is from 1 to 6. For W-8xx7 is 1 to 18.
ADR_ integer address in the array where the integer is to be stored, valid range

values from 1 to 256
DATA_ integer the integer value returned

ARY_N_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, valid range values for the I-8xx7 & I-

7188EG/XG is from 1 to 6. For W-8xx7 is 1 to 18
ADR_ integer address in the array where the integer is to be stored, valid

range values from 1 to 256
DATA_ integer the integer value to be saved to.
Q_ boolean if OK. return TRUE, else return FALSE

Note:
1. The long integer array use the same memory as short integer array. Be careful if using both
of them at the same time.

Word array (ID, ADR) Integer array (ID, ADR)
(1,1)
(1,2)

(1,1)

(1,3)
(1,4)

(1,2)

…
…

…

(12,255)
(12,256)

(6,256)

…
…

…

2. Data stored in array is cleared after power off

Example: Refer to the “ARRAY_R” example.

Description:
Function Read one integer (signed 32-bit) from an integer array

Description:
Function Save one integer to an integer array

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 359

ARY_W_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, for the I-8xx7 & I-7188EG/XG is from 1 to

12. For W-8xx7 is 1 to 36
ADR_ integer address in the array where the integer is to be stored, valid

range values from 1 to 256
DATA_ integer the integer value returned, ranging from –32768 ~ +32767

ARY_W_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
NUM_ integer array ID to be operated, for the I-8xx7 & I-7188EG/XG is from 1 to

12. For W-8xx7 is 1 to 36
ADR_ integer address in the array where the integer is to be stored, valid

range values from 1 to 256
DATA_ integer the integer value to be saved to. (-32768~+32767)
Q_ boolean if OK. return TRUE, else return FALSE

Note:
1. The long integer array use the same memory as short integer array. Be careful if use both of
them at the same time.

Word array (ID, ADR) Integer array (ID, ADR)
(1,1)
(1,2)

(1,1)

(1,3)
(1,4)

(1,2)

…
…

…

(12,255)
(12,256)

(6,256)

…
…

…

2. The datas stored in array are cleared after power off

Example: Refer to the “ARRAY_R” example.

Description:
Function read short integer (signed 16-bit) from array

Description:
Function write 1 short integer (signed 16-bit) to array of I-8xx7 controller

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 360

BCD_V

IN_ integer the BCD value to be converted
Q_ integer the returned value, For ex.

16#12345 � 12345
16#3490 � 3490
18 � 12

BIN2ENG

IN_ integer 2’s complement value to be converted
HI_2s_ integer upper limit of 2’s complement, -32768 to +32767
LO_2s_ integer lower limit of 2’s complement, -32768 to +32767
HI_EN_ integer upper limit of engineering format, -32768 to +32767
LO_EN_ integer lower limit of engineering format, -32768 to +32767
OUT_ integer the returned engineering format value, for ex.

HI_2s_ = 32767 , LO_2s_ = -32768, HI_EN_ = 1000, LO_EN_ = -1000
IN_ = 16383 � OUT_= 500
IN_ = -12345 � OUT_= -377

BIT_WD
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

B1_ ~ B16_ boolean the 16 boolean values to be converted
VAL_ integer the word value after the conversion

For ex. If B1_ and B2_ are TRUE and others are
all FALSE, VAL_ will be 3.
If only B4_ is TRUE and others are all FALSE,
VAL_ will be 8

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Description:
Function Convert BCD value to decimal value

Arguments:

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Description:
Function Transfer 2's complement value to Engineering format value

Arguments:

Description:
Function Convert 16 boolean values to a word value

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 361

COMARY_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
ARY_NO_ integer Byte array ID (1-24 for I-8xx7 & I-7188EG/XG), (1-48 for W-8xx7),

which is used to store the read bytes
NUM_ integer return the number of bytes been read

COMARY_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
ARY_NO_ integer Byte array ID (1-24 for I-8xx7 & I-7188EG/XG), (1-48 for W-8xx7),

which is used to store the read bytes
NUM_ integer the number of bytes starting from the first address in the byte array

to write
Q_ boolean OK. return TRUE

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

Example:
Refer to Chapter 11 - Demo_21, 22 & 23.
Refer to function “ARRAY_R” & “ARRAY_W”

Description:
Function Read all of the ready data of a COM PORT to a byte array

Description:
Function Write a byte array to a COM PORT

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 362

COMAY_NW
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Each long integer is composed of 4 bytes. And the format is a signed long.
Each integer written is composed of 4 bytes in the below INTEL formate.
 [lowest byte] [] [] [highest byte]
For ex., if there is 3 integers to write, the first one is 16#04030201 (67,305,985), the second
one is 16#08070605 (134,678,021) and the last one is 16#FFFFFFFE (-2).
The 12 bytes been written will be [01] [02] [03] [04] [05] [06] [07] [08] [FE] [FF] [FF] [FF]

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
ARY_NO_ integer array ID (1-6 for I-8xx7 & I-7188EG/XG), (1-18 for W-8xx7), which

is to write
NUM_ integer the number of long integers starting from the POS_ address in the

array to write
 POS_ Integer start position inside the array to write (1-256)
 if POS_ + NUM_ > 257, only (257-POS_) integer will be written
 for ex. if POS_=255, NUM_=3, only 2 integers written. They are

Pos. 255 & Pos. 256.
Q_ boolean OK. return TRUE

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

The long int array use the same memory as short interger array. Be careful if use both of
them at the same time (please refer to Ary_n_r, Ary_n_w, Ary_w_r, Ary_w_w)

Description:
Function Write one long integer array to COM PORT

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 363

COMAY_WW
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Each short integer is composed of 2 bytes. And the format is a signed short int
(-32768 ~ +32767).
Each short integer written is composed of 2 bytes in the below INTEL formate.
 [low byte] [high byte]
For ex., if there is 3 short integers to write, the first one is 16#0403 (1,027), the second one is
16#0807 (2,055) and the last one is 16#FFFE (-2).
The 6 bytes been written will be [03] [04] [07] [08] [FE] [FF]

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
ARY_NO_ integer array ID (1-12 for I-8xx7 & I-7188EG/XG), (1-36 for W-8xx7), which

is to write
NUM_ integer the number of short integers starting from the POS_ address in the

array to write
 POS_ Integer start position inside the array to write (1-256)
 if POS_ + NUM_ > 257, only (257-POS_) integer will be written
 for ex. if POS_=255, NUM_=3, only 2 integers written. They are

Pos. 255 & Pos. 256.
Q_ boolean OK. return TRUE

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

The long int array use the same memory as short interger array. Be careful if use both of
them at the same time.

Description:
Function Write one short Integer (Word) array to COM PORT

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 364

COMCLEAR
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
Q_ boolean OK. return TRUE

COMCLOSE
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
Q_ boolean OK. return TRUE

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

Example:

Description:
Function Clear receiving buffer of a COM PORT

Description:
Function Close COM PORT

 Refer to the “COMOPEN” example.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 365

COMOPEN
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8,

W-8xx7:2,3, or …
BAUD_ integer baud rate, can be 2400,4800, 9600, 19200, 38400, 57600, 115200
CHAR_ integer character size, can be 7 or 8
PARI_ integer parity, can be 0: none, 1: even, 2: odd
STOP_ integer stop bit, can be 1 or 2
Q_ boolean OK. return TRUE

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

Example:
Refer to Chapter 11 - Demo_21, 22 & 23.

Description:
Function Open COM port

Open COM3, baud rate is 19200.
The return is TRUE if open OK.

Write one byte (16#35) to
COM3

Close COM3

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 366

COMOPEN2
□ I-8417/8817 □ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-7188EG/XG:3~8, W-8xx7:2, or …
BAUD_ integer baud rate, can be 2400,4800, 9600, 19200, 38400,

57600, 115200
CHAR_ integer character size, can be 7 or 8
PARI_ integer parity, can be 0: none, 1: even, 2: odd
STOP_ integer stop bit, can be 1 or 2
FLOW_ boolean True: flow control by hardware(CTS / RTS) (7188EG/XG 3 ~ 5),

False: by software (XON / XOF) (7188EG/XG 3 ~ 8)

Q_ boolean OK. return TRUE

* If Target is W-8xx7, please make sure its COM2 is not Modbus RTU port before
using them. (Please refer to W-8xx7’s “Getting Started” Manual)

Description:
Function Open COM port with flow control, for RS232 port only

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 367

COMREAD
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
Q_ integer the data returned

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

* Call COMREADY to test data coming or not . If there is data, COMREAD & COMARY_R can
be used to read the data. If no data comimg, do not call COMREAD & COMARY_R, or COM
port will block.

Example:

Refer to “COMREADY” example.

Description:
Function Read one byte from a COM port

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 368

COMREADY
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
Q_ boolean If there is data coming, return TRUE. Else, return FALSE.

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

* Call COMREADY to test data coming or not . If there is data, COMREAD & COMARY_R can
be used to read the data. If no data comimg, do not call COMREAD & COMARY_R, or COM
port will block.

Example:
Refer to Chapter 11 - Demo_21, 22 & 23.

Description:
Function Test a COM port for data

Open COM3, baud is 19200.

Test is there datas coming
from COM3

Read one byte from
COM3

goto step 2 to prepare
to read another byte

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 369

COMSTR_W
Argument:

PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
STR_ Message the string to be written (max length is 255).
Q_ boolean Ok. return TRUE, else return FALSE.

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

Example:

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Description:
Function Write one string to a COM port

SW1 and TMP are declared
as boolean variables

To test this example, turns
SW1 to TRUE

Write ‘Hello’ to COM4

Turn to FALSE to write another string

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 370

COMWRITE
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
PORT_ integer I-8xx7:1, 3 ~ 20, I-7188EG:1~8, I-7188XG:2~8, W-8xx7:2,3, or …
DATA_ integer the byte to be written, valid range values from 0 ~ 255.
Q_ boolean Ok. return TRUE, else return FALSE.

Note:
* If using I-8xx7 & I-7188EG’s COM1, please set COM1 as non-Modbus-RTU port in

advance before it can work. (refer to Appendix C.1)
* If Target is W-8xx7, please make sure its COM2 & COM3 is not Modbus RTU port before

using them. (Please refer to W-8xx7’s “Getting Started” Manual)
* For I-8xx7:

ComPort No. on slot 0: Com5 ~ Com8
ComPort No. on slot 1: Com9 ~ Com12
ComPort No. on slot 2: Com13 ~ Com16
ComPort No. on slot 3: Com17 ~ Com20
ComPort No. on slot 4 ~ 7 is not available

Example:

Description:
Function Write one byte to a COM port

SW1 and TMP are declared
as boolean variables,VAL as
integer variable

To test this example, given
VAL a value (0~255) , then
turns SW1 to TRUE

Write VAL to COM4

Turn SW1= FALSE to write another
byte

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 371

CRC_16
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
NUM_ integer byte array ID to be operated, Valid range for I-8xx7 & I-7188EG/XG

is 1 to 24, for W-8xx7 is 1 to 48
ADR_ integer starting address in the array which is to be calculated
SIZE_ integer the number of bytes to be calculated
CR_H_ integer the returned high byte of the CRC-16 after calculation.
CR_L_ integer the returned low byte of the CRC-16 after calculation.

Example:

TMP is declared as a boolean. ii, CR_H_ and CR_L_ as integers, CRC16_1 is
declared as FB instance of type – CRC_16.

Description:
Function Block Calculate checksum - CRC-16

Save 4 hexadecimal
values of 41, 42, 43,
44 to address 3 to 6 of
No. 5 array.

Read 4 bytes from
address 3 to 6 of array
No. 5 and write them to
COM3.
Then call CRC16_1 to
calculate the checksum
starting form address 3
of No. 5 array, total 4
bytes been calculated.
Write high and low byte
of this checksum to
COM3.

Goto step 2 after 1 sec
to write to COM3
again.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 372

DI_CNT

Please refer to Section 3.8

EBUS_B_R
□ I-8417/8817 ■ I-8437/8837 ■ I-7188EG □ I-7188XG ■ W-8037/8337/8737

PACK_ integer which package No. to read (1 - 128)
B1_ ~ B8_ boolean the 8 boolean values contained in the package

Example:
Refer to Section 7.5

EBUS_B_W
□ I-8417/8817 ■ I-8437/8837 ■ I-7188EG □ I-7188XG ■ W-8037/8337/8737

PACK_ integer write to which package No. (1-128)
B1_ ~ B8_ boolean the 8 boolean values contained in the package
Q boolean always return TRUE.

Example:
Refer to Section 7.5

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Description:
Function Get parallel D/I counter at slot 0

Description:
Function block Read a boolean package from the Ebus device

Arguments:

Description:
Function block Write a boolean package to the Ebus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 373

EBUS_N_R
□ I-8417/8817 ■ I-8437/8837 ■ I-7188EG □ I-7188XG ■ W-8037/8337/8737

PACK_ integer which package No. to read. (1-128)
N1_ ~ N8_ integer the 8 integer values contained in the package

Example:
Refer to Section 7.5

EBUS_N_W
□ I-8417/8817 ■ I-8437/8837 ■ I-7188EG □ I-7188XG ■ W-8037/8337/8737

PACK_ integer write to which package No. (1-128)
N1_ ~ N8_ boolean the 8 integer values contained in the package
Q boolean always return TRUE.

Example:
Refer to Section 7.5

EBUS_STS
□ I-8417/8817 ■ I-8437/8837 ■ I-7188EG □ I-7188XG ■ W-8037/8337/8737

 ID_ Integer to get what ? 0: Boolean package , 1: Integer package
 PACK_ Integer get which package No. (1-128)

return:

 Q_ boolean TRUE: package is alive, FALSE: dead (communication break)

Example: Please refer to demo_49a & demo_49b

Description:
Function block Read a integer package from the Ebus device

Arguments:

Description:
Function block Write a integer package to the Ebus device

Arguments:

Description:
Function Get Package Status of Ebus
Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 374

EEP_B_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
ADR_ integer address in the EEPROM where the boolean value is stored,

I-8xx7, 7188EG/XG: 1 ~ 256 , W-8xx7: 1 ~ 1024
Q_ boolean the boolean value returned

* Read operation of the EEPROM can be used freely without to remove the protection.
* Be careful to use EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W, the EEPROM can

only to be written up to 100,000 times.

Example: refer to demo_17

EEP_B_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
ADRES_ integer address in the EEPROM where the boolean value is to be written to.

I-8xx7, 7188EG/XG: 1 ~ 256 , W-8xx7: 1 ~ 1024
DATA_ Boolean the boolean value to be written to
Q_ Boolean Ok. return TRUE.

* To write to the EEPROM, the protection must be removed in advance
* Be careful to use EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W, EEPROM can only

to be written up to 100,000 times.

Example: refer to demo_17

Description:
Function read a boolean value from the EEPROM

Description:
Function write a boolean value to the EEPROM

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 375

EEP_BY_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
ADR_ integer address in the EEPROM where the byte value is stored.

 I-8xx7, 7188EG/XG:1 ~ 1512 , W-8xx7: 1 ~ 14272
Q_ integer the byte value returned (0~255)

EEP_BY_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
ADR_ integer address in the EEPROM where the byte value is to be written to.

 I-8xx7, 7188EG/XG:1 ~ 1512 , W-8xx7: 1 ~ 14272
DATA_ integer the byte value to be written to, valid range values from 0 to 255.
Q_ Boolean Ok. return TRUE.

Note:
* If you are using this function with the EEP_WD_R, EEP_WD_W, EEP_N_R, and EEP_N_W
functions simultaneously, you must be careful to arrange the ADR_ because they all occupy
the same memory area. For example, ADR_2 of EEP_N_R occupies 4 bytes, and it uses the
same memory area as ADR_3 and ADR_4 of EEP_WD_R and the same address of ADR_5, 6,
7, and 8 of EEP_BY_R.
* Read operation of the EEPROM will work without removing the EEPROM protection.
* The EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W functions should not be used to
write to the EEPROM more than 100,000 times.

Example: refer to demo_17

Description:
Function read a byte (8-bit integer) value from the EEPROM

Description:
Function write a byte (8-bit integer) value to the EEPROM

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 376

EEP_EN
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
Q_ Boolean Ok: return TRUE, Fail: return FALSE

* BEFORE writing to the EEPROM, the EEPROM write protection must be turned off.
* The EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W functions should not be used to
write to the EEPROM more than 100,000 times.

EEP_N_R

Argument:
ADR_ integer address in the EEPROM where the 32-bit integer value is stored.

I-8xx7, 7188EG/XG: 1 ~ 378 , W-8xx7: 1 ~ 3568
Q_ integer the signed 32-bit integer value returned

EEP_N_W

Arguments:
ADR_ integer address in the EEPROM where the 32-bit integer value is to be

written to , I-8xx7, 7188EG/XG: 1 ~ 378 , W-8xx7: 1 ~ 3568
DATA_ integer the 32-bit integer value to be written to
Q_ Boolean Ok. return TRUE.

Note:
* If you are using this function with the EEP_WD_R, EEP_WD_W, EEP_BY_R, and
EEP_BY_W functions simultaneously, you must be careful to arrange the ADR_ because they
all occupy the same memory area. For example, ADR_2 of EEP_N_R occupies 4 bytes, and it
uses the same memory area as ADR_3 and ADR_4 of EEP_WD_R and the same address of
ADR_5, 6, 7, and 8 of EEP_BY_R.
* Read operation of the EEPROM will work without removing the EEPROM protection.
* The EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W functions should not be used to
write to the EEPROM more than 100,000 times.

Example: refer to demo_17

Description:
Function Remove the EEPROM write protection

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Description:
Function read an signed 32-bit integer value from the EEPROM

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Description:
Function write a signed 32-bit integer value to the EEPROM

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 377

EEP_PR
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
Q_ Boolean Ok: return TRUE, Fail: return FALSE

* After writing to an EEPROM, it is better to turned off the write protection.
* The EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W functions should not be used to
write to the EEPROM more than 100,000 times.

EEP_WD_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Argument:
ADR_ integer address in the EEPROM where the word value is stored.

 I-8xx7,7188EG/XG: 1 ~ 756 , W-8xx7: 1 ~ 7136
Q_ integer the word value returned (-32768 ~ +32767)

EEP_WD_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
ADR_ integer address in the EEPROM where the word value is to be written to.

I-8xx7,7188EG/XG: 1 ~ 756 , W-8xx7: 1 ~ 7136
DATA_ integer the word value to be written to, range from -32768 to +32767.
Q_ Boolean Ok. return TRUE.

Note:
* If you are using this function with the EEP_N_R, EEP_N_W, EEP_BY_R, and EEP_BY_W
functions simultaneously, you must be careful to arrange the ADR_ because they all occupy
the same memory area. For example, ADR_2 of EEP_N_R occupies 4 bytes, and it uses the
same memory area as ADR_3 and ADR_4 of EEP_WD_R and the same address of ADR_5, 6,
7, and 8 of EEP_BY_R.
* Read operation of the EEPROM will work without removing the EEPROM protection.
* The EEP_B_W, EEP_BY_W, EEP_WD_W and EEP_N_W functions should not be used to
write to the EEPROM more than 100,000 times.

Example: refer to demo_17

Description:
Function Set the EEPROM write protection

Description:
Function read a word (signed 16-bit integer) value from the EEPROM

Description:
Function write a word (signed 16-bit integer) value to the EEPROM

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 378

EMAIL

Please refer to Chapter 12 – “Sending Emails” .

■ I-8417/8817 ■ I-8437/8837 □ I-7188EG □ I-7188XG □ W-8037/8337/8737

Description:
Function Block Send an email

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 379

FBUS_B_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

PACK_ integer which package No. to read. (1-128)
B1_ ~ B8_ boolean the 8 boolean values contained in the package

Example:
Refer to Chapter 7 or demo_11a.

FBUS_B_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

PACK_ integer write to which package No. (1-128)
B1_ ~ B8_ boolean the 8 boolean values contained in the package
Q boolean always TRUE.

Example:

Refer to Chapter 7 or demo_11b.

Description:
Function block Read a boolean package from the Fbus device

Arguments:

Description:
Function block Write a boolean package to the Fbus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 380

FBUS_N_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

PACK_ integer which package No. to read. (1-128)
N1_ ~ N8_ integer the 8 integer values contained in the package

Example:
Refer to Chapter 7 or demo_11b.

FBUS_N_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

PACK_ integer write to which package No. (1-128)
N1_ ~ N8_ boolean the 8 integer values contained in the package
Q boolean always TRUE.

Example:
Refer to Chapter 7 or demo_11a.

FBUS_STS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ID_ Integer to get what ? 0: Boolean package , 1: Integer package
 PACK_ Integer get which package No. (1-128)

return:

 Q_ boolean TRUE: package is alive, FALSE: dead (communication break)

Example: Please refer to demo_49a & demo_49b

Description:
Function block Read an integer package (signed 32-bit) from the Fbus device

Arguments:

Description:
Function block Write an integer package (signed 32-bit) to the Fbus device

Arguments:

Description:
Function Get Package Status of Fbus

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 381

F_CREAT
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
 Path_ Message File path & name. For ex '\Compact Flash\data.txt'

ID_ integer file ID returned, if error happens, it returns 0

Note:
1. If the file already exist, the data inside it will be destroyed when calling this function.
2. For reading existing file, please call ISaGRAF Standard Function – “F_ROPEN()”
3. For writing & reading existing file, please call ISaGRAF Standard Function – “F_WOPEN()”

F_READ_B
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
Q_ integer the returned byte (0 - 255)

F_READ_F
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
Q_ real the returned float value (32-bit format)

Note:
1. Using ISaGRAF Standard Function –“FA_READ” & “FA_WRITE” to R/W long integer
2. Using ISaGRAF Standard Function –“FM_READ” & “FM_WRITE” to R/W message (string)

Example:
Refer to Wincon CD:\napdos\isagraf\wincon\demo\ “wdemo_01 & wdemo_02”

Description:
Function Creat an empty file for Reaing & Writing.

Description:
Function Read one byte from current position of an open file.

Description:
Function Read one float value (32-bit format) from current position of an open file.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 382

F_READ_W
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
Q_ integer the returned word (-32768 ~ +32767)

F_SEEK
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
POS_ integer position, unit is byte (1 to ...)

 Q_ boolean True: Ok , False: fail

F_WRIT_B
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
IN_ integer The byte value to write, 0 ~ 255.

if value > 255 or <0, the lowest byte is written
 Q_ boolean True: Ok , False: fail

Note:
1. Using ISaGRAF Standard Function –“FA_READ” & “FA_WRITE” to R/W long integer
2. Using ISaGRAF Standard Function –“FM_READ” & “FM_WRITE” to R/W message (string)

Example:
Refer to Wincon CD:\napdos\isagraf\wincon\demo\ “wdemo_01 & wdemo_02”

Description:
Function Read one word (signed 16-bit integer) from current position of an open file.

Description:
Function Move file position to ...

Description:
Function Write one byte to current position of an open file

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 383

F_WRIT_F
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
IN_ real The float value to write, (32-bit format)

 Q_ boolean True: Ok , False: fail

F_WRIT_W
□ I-8417/8817 □ I-8437/8837 □ I-7188EG □ I-7188XG ■ W-8037/8337/8737

Arguments:
ID_ integer File ID No. returned by F_ROPEN , F_WOPEN or F_CREAT
IN_ integer The word value to write, (-32768 ~ +32767)

 Q_ boolean True: Ok , False: fail

Note:
1. Using ISaGRAF Standard Function –“FA_READ” & “FA_WRITE” to R/W long integer
2. Using ISaGRAF Standard Function –“FM_READ” & “FM_WRITE” to R/W message (string)

Example:
Refer to Wincon CD:\napdos\isagraf\wincon\demo\ “wdemo_01 & wdemo_02”

Description:
Function Write one float value (32-bit format) to current position of an open file

Description:
Function Write one word value (signed 16-bit integer) to current position of an open file

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 384

GET_SN
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
 Sn_1_ ~ 8 Integer the returned serial No. 8 bytes.

Description:
Function block get hardware unique serial No.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 385

INP10LED
■ I-8417/8817 ■ I-8437/8837 □ I-7188EG □ I-7188XG □ W-8037/8337/8737

Arguments:
RUN_ Boolean When "TRUE", Process & Display Value To SMMI
VAL_I_ Integer Initial Value Displayed On S-MMI, Minimum Value

Is "0", maximum is 99999
NUM_ Integer Number Of Digits To Display, Valid Range From 1

To 5
U1_ Boolean When Rising From "FALSE" To "TRUE", Add 1 To

The Currently Displayed Digit
D1_ Boolean When Rising From "FALSE" To "TRUE", Subtract 1 From The

Currently Displayed Digit
L1_ Boolean When Rising From "FALSE" To "TRUE", Shift Left 1 Position From

Currently Displayed Digit
R1_ Boolean When Rising From "FALSE" To "TRUE", Shift Right 1 Position

From Currently Displayed Digit
VAL_O_ integer The Displayed Integer Value After Operation

Example: refer to demo_08, demo_11a.

ST equivalence:
 A := INP10LED(TRUE,100,4,UU,DD,LL,FALSE);
 (* A is declared as an integer variable *)
 (* UU,DD,LL are declared as boolean variables, can be linked to “push4key” board *)

Description:
Function input an decimal integer from the S_MMI

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 386

INP16LED
■ I-8417/8817 ■ I-8437/8837 □ I-7188EG □ I-7188XG □ W-8037/8337/8737

Arguments:
RUN_ Boolean When "TRUE", Process & Display Value To S-MMI
VAL_I_ Integer Initial Value Displayed On S-MMI, Minimum Value

Is "0", maximum is 16#FFFF
NUM_ Integer Number Of Digits To Display, Valid Range From 1

To 5
U1_ Boolean When Rising From "FALSE" To "TRUE", Add 1 To

The Currently Displayed Digit
D1_ Boolean When Rising From "FALSE" To "TRUE", Subtract 1 From The

Currently Displayed Digit
L1_ Boolean When Rising From "FALSE" To "TRUE", Shift Left 1 Position From

Currently Displayed Digit
R1_ Boolean When Rising From "FALSE" To "TRUE", Shift Right 1 Position

From Currently Displayed Digit
VAL_O_ integer The Displayed Integer Value After Operation

Example:

ST equivalence:
A := INP16LED(TRUE,16#2F04,4,UU,FALSE,LL,FALSE);
(* A is declared as an integer variable *)
(* UU,LL are declared as boolean variables,can be linked to “push4key” board *)

Description:
Function input an hexadecimal integer from the S_MMI

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 387

INT_REAL
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Long_ integer the 32-bit integer
 Real_ real the real value after mapping

Note: "Real_Int" can be used to map a Real value to a long integer.

I_RESET
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

return:
 Q_ boolean The return value has no meaning since the controller will reset

Note:
Please use this function very careful. If the controller is always reset, please refer to section
1.3.7 to delete the project inside the controller.

Example:
 (* OK1 is declared as boolean input, TMP as boolean internal *)
 if OK1=TRUE then
 TMP := i_reset();
 end_if;

I7000_EN
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Please refer to Section 6.4

Description:
Function Map a long integer to a Real value.
The algorithm in C language is Real_ = *((float *)&Long_);

Arguments:

Description:
Function Reset the controller

Description:
Function Enable/Disable Bus7000 communication

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 388

LONG_WD
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

LONG_ integer the 32-bit integer to be converted
LO_ integer the low word value after the conversion, from -32768 to +32767
HI_ integer the high word value after conversion, from -32768 to +32767

MBUS_B_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code ---- 1

SLAVE_ integer slave No. of the Modbus device, valid range from 0
to 255, should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. ,
should be constant value not variable.

Q_ boolean Ok. return TRUE, else return FALSE
B1_ ~ B8_ boolean the 8 boolean values that have been read

Note: The total number of “MBUS_B_R” that can be used in one ISaGRAF project is up to 64.
Example: Refer to Chapter 8.

MBUS_BR1
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code ---- 1

SLAVE_ integer slave No. of the Modbus device, valid range from 0 to
255. , should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. ,
should be constant value not variable.

PERIOD_ integer read data depends on period time, default is 1 sec.
The value should be 1 ~ 600 (sec)

Q_ boolean Ok. return TRUE, else return FALSE
B1_ ~ B8_ boolean the 8 boolean values that have been read

Note: The total number of “MBUS_BR1” + “MBUS_B_R” that can be used in one ISaGRAF
project is up to 64.

Description:
Function block Convert one integer to two words
Arguments:

Description:
Function block Read 8 bits (booleans) from the Mdobus device

Arguments:

Description:
Function block Read 8 bits (booleans) from the Mdobus device with period time

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 389

MBUS_B_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code 5 when NUM_W = 1
Use Modbus function code 15 when NUM_W = 2 to 4

SLAVE_ integer slave No. of the Modbus device, valid range from 0
to 255. , should be constant value
not variable.

ADDR_ integer the starting Modbus address to write, 0-65535. , should be constant
value not
variable.

NUM_W_ integer the number of bits to write, valid range from 1 to 4. , should be
constant value not variable.

ACTION_ boolean Set true to write, set FALSE to do nothing
B1_ ~ B4_ boolean bits to write
Q_ boolean Ok. return TRUE, else return FALSE

Note: The total number of “MBUS_B_W” + “MBUS_WB” blocks that can be used in one
ISaGRAF project is up to 64.

Example:

Refer to Chapter 8 or demo_16.

Description:
Function block write 1 to 4 bits (booleans) to the Mdobus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 390

MBUS_N_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code ---- 3

SLAVE_ integer slave No. of the Modbus device, valid range from 0
to 255. , should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. ,
should be constant value not variable.

Q_ boolean Ok. return TRUE, else return FALSE
N1_ ~ N8_ integer the 8 word values that have been read, valid range

values from -32768 to +32767

Note: The total number of “MBUS_N_R” + “MBUS_R” blocks that can be used in one
ISaGRAF project is up to 64.

Example:
Refer to Chapter 8 or demo_15a.

MBUS_NR1
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code ---- 3

SLAVE_ integer slave No. of the Modbus device, valid range from 0 to
255. , should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. , should
be constant value not variable.

PERIOD_ integer read data depends on period time, default is 1 sec. The
value should be 1 ~ 600 (sec)

Q_ boolean Ok. return TRUE, else return FALSE
N1_ ~ N8_ integer the 8 word values that have been read, valid range

values from -32768 to +32767

Note: The total number of “MBUS_N_R” + “MBUS_R” + “MBUS_NR1” blocks
that can be used in one ISaGRAF project is up to 64.

Description:
Function block Read 8 words (16-bit integer) from the Mdobus device

Arguments:

Description:
Function block Read 8 words (16-bit integer) from the Mdobus device with period time

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 391

MBUS_N_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code 6 when NUM_W = 1
Use Modbus function code 16 when NUM_W = 2 to 4

SLAVE_ integer slave No. of the Modbus device, valid range from 0
to 255. , should be constant value not
variable.

ADDR_ integer the starting Modbus address to write, 0-65535. ,
should be constant value not variable.

NUM_W_ integer the number of words to write, valid range values from 1 to 4. ,
should be constant value not variable.

ACTION_ boolean Set true to write, set FALSE to do nothing
N1_ ~ N4_ integer words to write (-32768 ~ 32767)
Q_ boolean Ok. return TRUE, else return FALSE

Note: The total number of “MBUS_N_W” blocks that can be used in one ISaGRAF project is
up to 64.

Example:
Refer to Chapter 8.

Description:
Function block write 1 to 4 words (booleans) to the Mdobus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 392

MBUS_ R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

* ISaGRAF controller is the Master, remote equipment is Slave
* adapt Modbus function code 1 or 2 or 3 or 4
* please make sure the remote device support the associated Modbus function
code

SLAVE_ integer slave No. of the Modbus device, valid range from 0 to
255. , should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. ,
should be constant value not variable.

CODE_ integer Request which Modbus function codes, 1-4. , should
be constant value not variable.

NUM_ integer Request how many bits? 1-192 for code 1 & 2 or
How many words? 1-12 for code 3 & 4. , should be constant value

not variable.

Q_ boolean Ok. return TRUE, else return FALSE
N1_ ~ N12_ integer The bits or words received. If CODE_ is 1 & 2, N1_ returns bit 1 to

16, N2_ returns bit 17 to 32, ... N12_ returns bit 177 to 192. If
CODE_ is 3 & 4, N1_ to N12_ returns the associated words (-
32768 to 32767). N1_ to N12_ is absolutly correct Only when Q
return TRUE (comm. ok)

Note: The total number of “MBUS_N_R” + “MBUS_R” + “MBUS_R1” blocks that can be
used in one ISaGRAF project is up to 64.

Description:
Function block Read Modbus code 1-4 from the Modbus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 393

MBUS_ R1
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

* ISaGRAF controller is the Master, remote equipment is Slave
* adapt Modbus function code 1 or 2 or 3 or 4
* please make sure the remote device support the associated Modbus function
code

SLAVE_ integer slave No. of the Modbus device, valid range from 0 to
255. , should be constant value not variable.

ADDR_ integer the starting Modbus address to read, 0-65535. ,
should be constant value not variable.

CODE_ integer Request which Modbus function codes, 1-4. , should
be constant value not variable.

NUM_ integer Request how many bits? 1-192 for code 1 & 2 or How
many words? 1-12 for code 3 & 4 . , should be
constant value not variable.

PERIOD_ integer read data depends on period time, default is 1 sec.
The value should be 1 ~ 600 (sec)

Q_ boolean Ok. return TRUE, else return FALSE
N1_ ~ N12_ integer The bits or words received. If CODE_ is 1 & 2, N1_ returns bit 1 to

16, N2_ returns bit 17 to 32, ... N12_ returns bit 177 to 192. If
CODE_ is 3 & 4, N1_ to N12_ returns the associated words (-32768
to 32767). N1_ to N12_ is absolutly correct Only when Q return
TRUE (comm. ok)

Note: The total number of “MBUS_N_R” + “MBUS_R” + “MBUS_R1” blocks that can be used
in one ISaGRAF project is up to 64

Description:
Function block Read Modbus code 1-4 from the Modbus device with period time

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 394

MBUS_WB
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Use Modbus function code 15

SLAVE_ integer slave No. of the Modbus device, range from 0 to 255. ,
should be constant value not variable.

ADDR_ integer the starting Modbus address to write, 0-65535. ,
should be constant value not variable.

NUM_W_ integer the number of bits to write, valid range from 1 to 16. ,
should be constant value not variable.

ACTION_ boolean Set true to write, set FALSE to do nothing
B1_ ~ B16_ boolean bits to write
Q_ boolean Ok. return TRUE, else return FALSE

Note: The total number of “MBUS_B_W” + “MBUS_WB” blocks that can be used
in one ISaGRAF project is up to 64.

Description:
Function block write 1 to 16 bits (booleans) to the Mdobus device

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 395

MI_BOO
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

X_ integer X position, 1-30
Y_ integer Y position, 1-8
BOO_ boolean boolean value to display. TRUE display “ON”, FALSE display “OFF”
Q_ boolean Ok. return TRUE, else return FALSE

MI_INP_N
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

EN_ boolean TRUE: enable
INIT_ integer Initial value to input
INT_ integer The integer value been input. If EN_ is FALSE , it returns 0

Note:
MI_INP_N & MI_INP_S Can be used only at one place in the project. Called at 2 or more places
will work fail.

Demo:
Please refer to Chapter 16 & demo_38, demo_39

Description:
Function Display a boolean value on MMICON

Arguments:

Description:
Function Input an integer value from MMICON

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 396

MI_INP_S
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

EN_ boolean TRUE: enable
INIT_ message Initial string value to input
STR_ message The string been input. If EN_ is FALSE , it returns ‘’ (empty string)

Note:
MI_INP_N & MI_INP_S Can be used only at one place in the project. Called at 2 or more places
will work fail.

To input a real value, please use MI_INP_S, STR_REAL & REAL_STR and refer to demo_39.

MI_INT
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

X_ integer X position, 1-30
Y_ integer Y position, 1-8
LEN_ integer Max number of digits to display, 1-11
INT_ integer integer value to display.
Q_ boolean Ok. return TRUE, else return FALSE

Demo:
Please refer to Chapter 16 & demo_38, demo_39

Description:
Function Input an string from MMICON

Arguments:

Description:
Function Display an Integer value on MMICON

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 397

MI_REAL
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

X_ integer X position, 1-30
Y_ integer Y position, 1-8
LEN_ integer Max number of digits to display, 1-13
LEN1_ integer number of digit after '.' (0~4) and less than LEN_. For ex. if LEN_=7,

LEN1_=2, "123.4567" will be displayed as " 123.45"
REAL_ real real value to display. If the number of digits exceeds LEN_, '******'

will be displayed
Q_ boolean Ok. return TRUE, else return FALSE

Note:
If abs. of the real value >= 1,000,000 or (> 0 & < 0.0001) , please give LEN_ as 13 to display
for ex. -123,456,789, please set LEN_ to 13 and it is displayed as -1.23457e+008. And
0.0000123456, please set LEN_ to 13 and it is displayed as 1.23456e-005

MI_STR
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

X_ integer X position, 1-30
Y_ integer Y position, 1-8
LEN_ integer Max number of characters to display, 1-240
STR_ message The string to display. If the number of characters exceeds LEN_,

only the first LEN_ of char. will be displayed
PASSWD_ boolean TRUE: display as password, all char. are replaced as ‘*’. FALSE:

displayed as string.
Q_ boolean Ok. return TRUE, else return FALSE

Demo:
Please refer to Chapter 16 & demo_38, demo_39

Description:
Function Display a real value on MMICON

Arguments:

Description:
Function Display a string on MMICON

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 398

REAL_INT
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

The algorithm in C language is Long_ = *((long *)&Real_);

 Real_ real the real value to map
Long_ integer the 32-bit integer after mapping

Note:
"Int_Real" can be used to map a long integer to a Real value.

REAL_STR
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 REAL_ real the real value to convert
STR_ message the string returned (Max length is 13), For ex.

 1.234 ---> '1.234'
 123456789.0 ---> '1.23457E+008'
 0.00001234 ---> '1.234E-005'

Note:
"STR_REAL" can be used to convert a string to a Real value.

Description:
Function Map a Real value to a long integer.

Arguments:

Description:
Function Convert a Real value to a string.

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 399

PID_AL
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Example:
Please refer to Chapter 11 - Demo_18, and ICP DAS CD-ROM :
\Napdos\ISaGRAF\8000\English_Manu\PID_AL.Complex PID algorithm implementation.htm

PWM_DIS

Please refer to Section 3.7.

PWM_EN

Please refer to Section 3.7.

PWM_EN2

Please refer to Section 3.7.

PWM_ON

Please refer to Section 3.7.

PWM_OFF

Please refer to Section 3.7.

PWM_STS

Please refer to Section 3.7.

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Description:
Function Disable PWM output

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737
Description:
Function Enable PWM output.

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737
Description:
Function Enable PWM output to output some pulse.

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737
Description:
Function Set parallel D/O to TRUE immediatelly

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737
Description:
Function Set parallel D/O to FALSE immediatelly

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737
Description:
Function Get PWM status

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 400

S_B_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address, one Boolean occupy 1 byte.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

return:

 BOO_ Boolean The boolean value been read is 0=FALSE, not 0 = TRUE

S_B_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer start from which address, one boolean occupy 1 byte.

S256: 1 ~ 249,856 (1 ~ 16#3D000)
S512: 1 ~ 512,000 (1 ~ 16#7D000)
X607: 1 ~ 118,784 (1 ~ 16#1D000)
X608: 1 ~ 512,000 (1 ~ 16#7D000)

 NUM_ Integer how many booleans to write, 0 ~ 4
 B1_~B4_ Boolean the boolean value to write

return:

 Q_ Boolean Ok: TRUE, Fail: FALSE

The boolean value will be stored is FALSE=0, TRUE=1

Please refer to section 10.3

Description:
Function Read one boolean from the volatile SRAM

Arguments:

Description:
Function Write up to 4 boolean to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 401

S_BY_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address, one Byte occupy 1 byte.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

return:

 N_ Integer The byte value been read, 0 ~ 255

S_BY_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer start from which address, one byte occupy 1 byte.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

 NUM_ Integer how many bytes to write, 0 ~ 4
 N1_~N4_ Boolean the byte value (0-255) to write

return:

 Q_ Boolean Ok: TRUE, Fail: FALSE

Please refer to section 10.3

Description:
Function Read one byte from the volatile SRAM

Arguments:

Description:
Function Write up to 4 bytes to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 402

S_DL_DIS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

return:
 Q_ Boolean TRUE: ok, FALSE: fail

S_DL_EN
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

return:
 Q_ Boolean TRUE: ok, FALSE: fail

Note:
The default setting is "Disable". S_DL_EN sholud be called, then PC download data to the
volatile SRAM is possible.

S_DL_RST
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

return:
 Q_ Boolean TRUE: ok, FALSE: fail

S_DL_STS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

return:
 STS_ Integer -1: No action,

1: PC is Downloading data to the SRAM now
2: download accomplishment

Note:
 S_DL_RST can be called to reset the status to -1 (reset to "No action")

Please refer to section 10.3

Description:
Function Disable the download permission, so that PC can not download data to the SRAM

Description:
Function Enable the download permission for PC to download data to the volatile SRAM

Description:
Function Reset the Download Status to “-1:No action” for the volatile SRAM

Description:
Function Get PC’s Download Status for the volatile SRAM

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 403

SET_LED
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Description:
Function Displays A Message To The S-MMI

Arguments:
RUN_ Boolean Set To "TRUE" To Display Message
FLASH_ Integer Set each digit To "1" To blink each Message.

Example: Set To 11 (0000011)
Means The 6th & 7th Display Positions Will
Blink. Set To 100001 (0100001) Means The
2nd & 7th Display Positions Will blink

CLK_ Timer Amount Of Time For Display To blonk
LED1_ Integer Value Of Position Display #1
LED2_ Integer Value Of Position Display #2
LED3_ Integer Value Of Position Display #3
LED4_ Integer Value Of Position Display #4
LED5_ Integer Value Of Position Display #5
LED6_ Boolean Value Of Position Display #6
LED7_ Boolean Value Of Position Display #7

* Refer to section A.3 to see the display char. of LED1 ~ LED5, LED6, LED7.

Example:

ST equivalence:
OUT1 := SET_LED(TRUE,1000110,t#500ms,1,2,3,4,5,TRUE,TRUE);
(* OUT1 is declared as a boolean variable *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 404

S_FL_AVL
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ID_ Integer File identifier No. (1 ~ 8)
HEAD_ Integer The current available starting byte No.
TAIL_ Integer The current available ending byte No.

(HEAD_, TAIL_) must resides inside the area of the associate file (Please refer to
"S_FL_INI"), or Q_ will return FALSE

1 or
S256: 1 ~ 249,856
S512: 1 ~ 512,000
X607: 1 ~ 118,784
X608: 1 ~ 512,000

For ex.,

A file of ID_ = 1 resides at byte No. of 1 ~ 20000 , it can store up to 20000 bytes.

1. if setting one of HEAD_ and TAIL_ to -1, no data of the file is available. It means when you
load this file from PC, its size is 0 byte.

2. if setting HEAD_=1, TAIL_=1000, the current available data of the file will be at 1 ~ 1000
inside the volatile SRAM. It means when you load this file from PC, its size is 1000 bytes.

3. if setting HEAD_=10001, TAIL_=5000 : the current available data of the file will be at 10001
~ 20000 and then continued with 1 ~ 5000 inside the volatile SRAM. It means when you load
this file from PC, its size is 15000 bytes.

4. if setting HEAD_=1000, TAIL_=1000, no data of the file is available. It means when you load
this file from PC, its size is 0 byte.

return:

 Q_ boolean TRUE: ok , FALSE: fail

Note: S_FL_INI should be called once before S_FL_AVL is called

Description:
Function Set one file's current available byte No. for the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 405

S_FL_INI
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ID_ Integer File identifier No. (1 ~ 8)
NAME_ Message File name, up to 8 char. for the name & up to 3 char. for the

extension. For ex., "data1.txt", "A1234567.bin". Valid char. are A ~
Z , a ~ z , _ , 0 ~ 9, and the 1st should be A ~ Z or a ~ z

BEGIN_ Integer The begin byte No. of the file. BEGIN_ must less than END_
END_ Integer The end byte No. of the file. BEGIN_ must less than END_

S256: 1 ~ 249,856
S512: 1 ~ 512,000
X607: 1 ~ 118,784
X608: 1 ~ 512,000

For ex.,
BEGIN_=101, END_=5000 : the file resides at 101 ~ 5000 inside the SRAM.

return:

 Q_ boolean TRUE: ok , FALSE: fail

S_FL_RST
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ID_ Integer File identifier No. (1 ~ 8)

return:

 Q_ Boolean TRUE: ok, FALSE: fail

Note:
 1. S_FL_INI should be called first.
 2. S_FL_STS can be called to get file's status

Please refer to section 10.3

Description:
Function Init one file’s name & location for the volatile SRAM

Arguments:

Description:
Function Reset file's Status to "Not been load by PC yet" for the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 406

S_FL_STS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ID_ Integer File identifier No. (1 ~ 8)

return:

 END_ Integer The end byte No. that has been load by PC

 Not been load: -1
 S256: 1 ~ 249,856

S512: 1 ~ 512,000
X607: 1 ~ 118,784
X608: 1 ~ 512,000

For ex.,

A file of ID_ = 1 is located at byte No. of 1 ~ 20000 , it can store up to 20000 bytes. And its
current available data is setting at 1001 ~ 10000 inside the volatile SRAM.

1. If return END_ is -1, it means PC hasn't load it yet.

2. If return END_ is 10000 (Normally the value is equal to the current available ending byte No.),
it means PC has load it from 1001 ~ 10000

3. If return END_ is 8000, it means PC has load it from 1001 ~ 8000

Note:
 1. S_FL_INI should be called first.
 2. S_FL_RST can be called to reset the status to -1 (reset to "PC hasn't load it yet")

Please refer to section 10.3

Description:
Function Get file's Status, end byte No. that has been load by PC for the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 407

SMS_GET
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 REF_ Integer to get what ? , 1 ~ 7

 1: get year, (N_ = 2000 ~ 2099)
 2: get month, (N_ = 1 ~ 12)
 3: get date, (N_ = 1 ~ 31)
 4: get week date,(N_ = 1 ~ 7, 7 means Sunday)
 5: get hour, (N_ = 0 ~ 23)
 6: get minute, (N_ = 0 ~ 59)
 7: get second, (N_ = 0 ~ 59)

 others: return N_=-1 : error

return:

 N_ Integer Return associated with Ref_. If return -1, it may be "No message" or
Ref_ out of range of 1 ~ 7

Note:

1. SMS_gets & SMS_get can be called to get message
2. After SMS_gets(1) is called (get message data), the message buffer will reset to "No
message". So if the orther information are need, please call SMS_get(1~7) & SMS_gets(2) &
SMS_gets(3) before calling SMS_gets(1)

Example: demo_43

Description:
Function Get message date and time from controller's date & time

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 408

SMS_GETS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 REF_ Integer to get what ? , 1 ~ 3

 1: get message data
 2: get phone No. of sender
 3: get date & time in string format

 others: return M_= 'error'

return:

 M_ Message Return associated with Ref_. If return 'error', it may be "No
message" or Ref_ out of range of 1 ~ 3

Note:

1. SMS_gets & SMS_get can be called to get message
2. After SMS_gets(1) is called (get message data), the message buffer will reset to "No
message". So if the orther information are need, please call SMS_get(1~7) & SMS_gets(2) &
SMS_gets(3) before calling SMS_gets(1)

Example: demo_43

Description:
Function Get message data and other information

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 409

SMS_SEND
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 No_ message to which phone No. , fro ex. '+886920119135', max len is 31 digits

 M_ message the message to send

return:

 Q_ Boolean True: ok. ,
 False: wrong phone No or "message sending status" is not 0 or 21

Note:

1. Please call SMS_sts to get the "Message Sending status" before calling SMS_send.
SMS_send only works when status is not 1:busy

2. A successfully SMS_send request will reset the "Message sending status" to "1:busy", and
after that, by the time, it will set to the associate status. For ex. 21:successfully sent

Example: demo_43

Description:
Function Trigger the controller to send a new message

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 410

SMS_STS
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

return:

 N_ Integer

 0: waiting for a new sending request
 1: busy. (One message is processing now)
 21: The message is sent successfullly

 -1: SMS system is not available (Check GSM Modem & SIM card)
 -2: Timeout, No response. (It May be no such a phone No.)

Note:

1. Please call SMS_sts to get the "Message Sending status" before calling SMS_send.
SMS_send only works when status is not 1:busy

2. A successfully SMS_send request will reset the "Message sending status" to "1:busy", and
after that, by the time, it will set to the associate status. For ex. 21:successfully sent

Example: demo_43

Description:
Function Get Message Sending status

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 411

SMS_TEST
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

return:

 Q_ Boolean TRUE: A message is coming, FALSE: No message

Note:

1. SMS_gets & SMS_get can be called to get message
2. After SMS_gets(1) is called (get message data), the message buffer will reset to "No
message". So if the orther information are need, please call SMS_get(1~7) & SMS_gets(2) &
SMS_gets(3) before calling SMS_gets(1)

Example: demo_43

Description:
Function Test if message coming or not

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 412

S_M_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address.
 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)
 LEN_ Integer Max length of the string to read, 0 ~ 255
return:
 STR_ Message The string value been read

For ex., data in memory is 16#31, 16#32, 16#33, 16#34, 16#35, 0, 16#37, 16#38, ...
 LEN_=0 ----> STR_= '' (empty string)
 LEN_=3 ----> STR_= '123'
 LEN_=5 ----> STR_= '12345'
 LEN_=6 ----> STR_= '12345'
 LEN_=7 ----> STR_= '12345'
 LEN_=100 ----> STR_= '12345'

S_M_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer write to which address.
 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

LEN_ Integer Max length of the string to write, 0 ~ 255.
STR_ Message the string value.

 For ex.
 LEN_=0 , STR='12345' ----> no data written
 LEN_=1 , STR='12345' ----> 16#31 (1 byte written)
 LEN_=3 , STR='12345' ----> 16#31, 16#32, 16#33 (3 bytes written)
 LEN_=7 , STR='12345' ----> 16#31, 16#32, 16#33, 16#34, 16#35, 0, 0 (7 bytes written)
 LEN_=100 , STR='12345' --> 16#31, 16#32, 16#33, 16#34, 16#35, 0, 0, 0, … (100 bytes

written)
Return:
 Q_ boolean Ok: TRUE, Fail: FALSE

Description:
Function Read one string from the volatile SRAM
Arguments:

Description:
Function Write one string to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 413

S_MV
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR1_ Integer destination start position

 S256: 1 - 249856 (1 - 16#3D000)
 S512: 1 - 512000 (1 - 16#7D000)
 X607: 1 - 118784 (1 - 16#1D000)
 X608: 1 - 512000 (1 - 16#7D000)

 NUM_ Integer how many bytes to move, 0 - 512,000

 ADR2_ Integer Move from which starting position

return:

 Q_ boolean Ok: TRUE, Fail: FALSE

Description:
Function Move some bytes inside the volatile SRAM
Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 414

S_N_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address, one Integer occupy 4 bytes.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)
return:

 N_ Integer The integer value been read, 32-bit, signed

The integer written in the SRAM is [Lowest byte] [2nd byte] [3rd byte] [High byte], for ex. a
integer of 16#01020304, it will be saved in the SRAM as [04] [03] [02] [01]

S_N_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer start from which address,one Integer occupy 4 byte.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

 NUM_ Integer how many integers to write, 0 ~ 4
 N1_~N4_ Integer the integer value (32-bit, signed) to write

The integer written in the SRAM is [Lowest byte] [2nd byte] [3rd byte] [High byte], for ex. a
integer of 16#01020304, it will be saved in the SRAM as [04] [03] [02] [01]

return:

 Q_ Boolean Ok: TRUE, Fail: FALSE

Description:
Function Read one integer from the volatile SRAM

Arguments:

Description:
Function Write up to 4 integers to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 415

S_R_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address, one Real value occupy 4 bytes.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

return:

 R_ Real The real value been read, 32-bit float

The real value written in the SRAM is [Lowest byte] [2nd byte] [3rd byte] [High byte]. For ex.
Real Value of 1.23 is consists of 4 bytes --> 16#A4 , 16#70 , 16#9D , 16#3F

S_R_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer start from which address, one Real occupy 4 byte.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

 NUM_ Integer how many real values to write, 0 ~ 4
 R1_~R4_ Real the real value (32-bit float) to write

The real value written in the SRAM is [Lowest byte] [2nd byte] [3rd byte] [High byte]. For ex.
Real Value of 1.23 is consists of 4 bytes --> 16#A4 , 16#70 , 16#9D , 16#3F

return:

 Q_ Boolean Ok: TRUE, Fail: FALSE

Description:
Function Read one real value from the volatile SRAM

Arguments:

Description:
Function Write up to 4 real values to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 416

S_WD_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer read which address, one Word occupy 2 bytes.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

return:

 N_ Integer The word value been read, -32768 ~ +32767

The word written in the SRAM is [Low byte] [High byte], for ex. a integer of 16#0102, it will
be saved in the SRAM as [02] [01]

S_WD_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

 ADR_ Integer start from which address, one Word occupy 2 bytes.

 S256: 1 ~ 249,856 (1 ~ 16#3D000)
 S512: 1 ~ 512,000 (1 ~ 16#7D000)
 X607: 1 ~ 118,784 (1 ~ 16#1D000)
 X608: 1 ~ 512,000 (1 ~ 16#7D000)

 NUM_ Integer how many words to write, 0 ~ 4
 N1_~N4_ Integer the word value (-32768 ~ 32767) to write

The word written in the SRAM is [Low byte] [High byte], for ex. a integer of 16#0102, it will
be saved in the SRAM as [02] [01]

return:

 Q_ Boolean Ok: TRUE, Fail: FALSE

Description:
Function Read one word from the volatile SRAM
Arguments:

Description:
Function Write up to 4 words to the volatile SRAM

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 417

STR_REAL
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 STR_ message For ex, '123.456' , '-0.2345' , ' +2.13E10' , ' 15.2345E-2'
REAL_ real The real value retured. If REAL_ is 1.23E-20 , it means STR_ is a

wrong setting. For ex, if STR_=’ 123.AB’ or ‘23-45.17’ or
‘1.2.345’, REAL_ will return 1.23E-20

Note:
"REAL_STR" can be used to convert real value to a string

Description:
Function Convert a string to Real value

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 418

SYSDAT_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
YY_ Integer Year Returned (Example: 2002, 2003, 2010, Etc.)
MM_ Integer Month Returned

(1 = Jan., 3 =March, 10 = October, Etc.)
DD_ Integer Day Returned, Valid Range From 1 To 31
WW_ Integer Date Returned

(1 = Monday, 4 = Thursday, 7 = Sunday, Etc.)
Example: refer to demo_03.

Y1, M1, D1 and W1 are declared as integer variables.

ST equivalence:
DAT_R1(); (* call DAT_R1 *)
Y1 := DAT_R1.YY_ ; (* get year *)
M1 := DAT_R1.MM_ ; (* get month *)
D1 := DAT_R1.DD_ ; (* get day *)
W1 := DAT_R1.WW_ ; (* get date *)
(* DAT_R1 is declared as FB instance with typed - SYSDAT_R *)

Description:
Function block Read system year, month, day and date.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 419

SYSDAT_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
IN_ Boolean Set System Date When Rising From

"FALSE" To "TRUE"
YY_ Integer Year To Write

(Example: 2002, 2003, 2010, Etc.)
MM_ Integer Month To Write (1 = Jan., 3 = March, 10 =October, Etc.)
DD_ Integer Day Returned, Valid Range From 1 To 31
Q_ Boolean If "OK", Returns "TRUE"

Example: refer to demo_03.

SW1 is declared as a boolean variable. Y1, M1, D1 are declared as integer variables.

St equivalence:
DAT_W1(SW1, Y1, M1, D1); (* call DAT_W1 *)
OUT1 := DAT_W1.Q_ ; (* get return value *)
(* DAT_W1 is declared as a FB instance with type - SYSDAT_W *)
(* OUT1 as a boolean variable *)

Description:
Function block Set system year, month and day.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 420

SYSTIM_R
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
HH_ Integer Hour Returned (Valid Range From 0 To 23)
MM_ Integer Minute Returned (Valid Range From 0 To 59)
SS_ Integer Second Returned (Valid Range From 0 To 59)

Example: refer to demo_03, demo_15b.

H1, M1 and S1 are declared as integer variables.

ST equivalence:
(* TIM_R1 is declared as FB instance with type - SYSTIM_R *)
TIM_R1(); (* Call TIM_R1 *)
H1 := TIM_R1.HH_ ; (* get hour *)
M1 := TIM_R1.MM_ ; (* get minute *)
S1 := TIM_R1.SS_ ; (* get second *)

Description:
Function block Read system hour, minute and second.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 421

SYSTIM_W
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Arguments:
IN_ Boolean Set System Date When Rising From

"FALSE" To "TRUE"
HH_ Integer Hour To Write, 0 - 23
MM_ Integer Minute to Write, 0 - 59
SS_ Integer Second to write, 0 - 59
Q_ Boolean If "OK", Returns "TRUE"

Example: refer to demo_03.

SW1 is declared as a boolean variable. H1, M1, S1 are declared as integer variables.

St equivalence:
TIM_W1(Sw1,H1,M1,S1); (* call TIM_W1 *)
OUT1 := TIM_W1.Q_ ; (* get return value *)
(* TIM_W1 is declared as a FB instance with type - SYSTIM_W *)
(* OUT1 as a boolean variable *)

Description:
Function block Set system hour, minute and second.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 422

TIME_STR
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

 YEAR_ integer year, 2000 ~
 MON_ integer month, 1 ~ 12 (January ~ December)
 MDAY_ integer mday, 1 ~ 31
 WDAY_ integer wday, 1 ~ 7 (Monday ~ Sunday)
 HOUR_ integer hour, 0 ~ 23
 MIN_ integer minute, 0 ~ 59
 SEC_ integer second, 0 ~ 59

 If given wrong input parameters will return M_ = '' (empty string). For. ex. give MON_=14

return:

 M_ message length is 24 characters. For ex. 'Feb/18/2003,13:25:45,Tue'

Note: Please use sysdat_r & systim_r to get system date & time

TWIN_LED
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Arguments:
RUN_ boolean to show if TRUE
V1_ integer value displayed on the 2 digits on left of 1st screen, 0 ~ 99
V2_ integer value displayed on the 2 digits on right of 1st screen, 0 ~ 99
VAL_ integer value displayed on the 2nd screen, -99999 ~ 99999
CLK_ timer the blinking period of these 2 screens
Q_ boolean always TRUE

Example: refer to demo_10.

Description:
Function Convert date & time to string format

Arguments:

Description:
Function show a 2 screen values to the S-MMI

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 423

VAL_HEX

Arguments:
VAL_ integer the value to be converted
DIGIT_ integer number of digits of HEX_ , valid values are 1 ~ 8. Given others will do no

conversion and force HEX_ to ' ' (empty message)
HEX_ message the hex-message after conversion

Example:
 val_hex(100,3) ---> '064'

 val_hex(192,4) ---> '00C0'
 val_hex(4589,2) ---> 'ED' ('11ED', DIGIT_ is 2, force '11' trucated)
 val_hex(4589,9) ---> ' ' (DIGIT_ > 8, output ' ')
 val_hex(-2,8) ---> 'FFFFFFFE'

VAL10LED
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Description:
Function disply an decimal integer on the S-MMI

Arguments:

RUN_ Boolean if TRUE, display it
FLASH_ Boolean if TRUE, blink it
CLK_ Timer the blinking period
VAL_I_ Integer the integer to be displayed

Range from -9999 to +99999
Q_ Boolean always returns TRUE。

Example: refer to demo_07, demo_11b.

ST equivalence:
out1 := VAL10LED(TRUE,TRUE,t#500ms,9875);
(* out1 is declared as a boolean variable *)

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737
Description:
Function Convert an integer to a fixed-length hexa-message

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 424

VAL16LED
■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG □ W-8037/8337/8737

Arguments:
RUN_ Boolean if TRUE, display it
FLASH_ Boolean if TRUE, blink it
CLK_ Timer the blinking period
VAL_I_ integer the value to be displayed

Valid range from 16#0 to 16#FFFFF
Q_ Boolean always return TRUE

Example:

ST equivalence:
OUT1 := VAL10LED(TRUE,FALSE,t#500ms,16#A20E6);
(* OUT1 is declared as a boolean variable *)

V_BCD

IN_ integer the value to be converted
Q_ integer the returned BCD value, For ex.

12345 � 16#12345
16 � 22 (16#16)

Description:
Function display an hexadecimal integer on S-MMI

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Description:
Function Convert value to BCD value

Arguments:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 425

WD_BIT

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

VAL_ integer the word to be converted.
ENO boolean no usage, don’t care about it.
B1_ ~ B16_ boolean the 16 boolean values after converted

For ex. If VAL_ is 4, B3_ will be TRUE and others
will be FALSE.
If VAL_ is 3, B1_ and B2_ will be TRUE and
others will be FALSE.

WD_LONG

■ I-8417/8817 ■ I-8437/8837 ■ I-7188EG ■ I-7188XG ■ W-8037/8337/8737

Lo_ integer Low word (only the lowest 16-bit is used)
Hi integer High word (only the lowest 16-bit is used)
Long_ integer the 32-bit integer composed by Lo_ and Hi_ word

 Lo_ Hi_ ---> Long_

 -32768 (8000) -1 (FFFF) ---> -32768 (FFFF 8000)

 -1 (FFFF) -1 (FFFF) ---> -1 (FFFF FFFF)

 -32768 (8000) 0 (0000) ---> +32768 (0000 8000)

 100 (0064) 4103 (1007) ---> + 268 894 308 (1007 0064)

Description:
Function block Convert a word value to 16 boolean values

Arguments:

Description:
Function Convert two words to one long integer

Arguments:

Example:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 426

Appendix B: Setting The IP, Mask & Gateway
Address of The I-8437/8837 & I-7188EG Controllers

This document describe the proper way to set the IP address, address mask
and gateway address of the I-8437/8837 & I-7188EG controllers.

**
EACH I-8437/ 8837 or I-7188EG USES TCP/IP PORT NO. 502 TO TALK TO THE HMI
AND ISAGRAF WORKBENCH. A MAX. NUMBER OF 4 PCS CAN TALK TO THE
I-8437/8837 or I-7188EG THROUGH MODBUS TCP/IP PROTOCOL.
**

1. Create a file folder named "8000" in your hard drive.
 For example, "c:\8000".

For Windows NT, Windows 2000 & Windows XP Users:
2. Copy \Napdos\ISaGRAF\8000\Driver\7188xw.exe, 7188xw.ini
 from the CD_ROM into your "8000" folder.
3. Run "\8000\7188xw.exe" in your hard drive. A "7188xw" screen
 will appear.

For Dos, Windows 95 & Windows 98 Users:
2. Copy \Napdos\ISaGRAF\8000\Driver\7188x.exe, 7188x.ini
 from the CD_ROM into your "8000" folder.
3. Run "\8000\7188x.exe" in your hard drive. A "7188x" screen
 will appear.

4. Link from COM1 or COM2 of your PC to COM1 of the I-8437/8837 (or I-7188EG)
 controller by a RS232 cable.

5. Power off the I-8437/8837 (or I-7188EG) controller, connect pin "INIT" to
 "INIT COM" (GND for I-7188EG), and then power it up.

6. If the connection is Ok, messages will appear on the
 7188x screen.

 **
 **** 7188x Ver. 1.01.0 02/23/2000 ****
 *** Press F1 for help. ***
 **
 ICP_DAS MiniOS7 for 8000-485 Ver. 1.03 build 014,May 09 2001 14:30:36
 SRAM:512K, FLASH MEMORY:512K
 Serial number= 5A 5A 5A 5A 5A 5A 5A 5A
 8000>

7. Type "ip" to see the current IP address of the I-8437/8837 (or I-7188EG).

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 427

 8000> ip
 IP=192.168.255.255
 8000>

8. Type "setip xxx.xxx.xxx.xxx" to set to a new IP address.

 8000> setip 192.168.1.200
 Set IP=192.168.1.200
 [ReadBack]IP=192.168.1.200
 8000>

9. Type "mask" to see the current address mask of the I-8437/8837 (or I-7188EG).

 8000> mask
 MASK=255.255.0.0
 8000>

10.Type "setmask xxx.xxx.xxx.xxx" to set to a new address mask.

 8000> setmask 255.255.255.0
 Set MASK=255.255.255.0
 [ReadBack]MASK=255.255.255.0
 8000>

11.Type "gateway" to see the current gateway address.

 8000> gateway
 Gateway=192.168.0.1
 8000>

12.Type "setgateway xxx.xxx.xxx.xxx" to set to a new gateway address.

 8000> setgateway 192.168.1.1
 Set GATEWAY=192.168.1.1
 [ReadBack]Gateway=192.168.1.1
 8000>

13.Press ALT_X to exit "7188x" and close the DOS SHELL, or
 COM1/COM2 of the PC will be occupied.

14. Remove the connection between "INIT" - "INIT COM", reset the
 I-8437 / 8837 (or I-7188EG) controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 428

Appendix C: Update The I-8417 / 8817 / 8437 / 8837
Controller to New Hardware Driver

The ISaGRAF embedded driver is firmware burned into the flash memory of the I-8417 / 8817 /
8437 / 8837 controller. It can be easily upgraded by the user.

Please refer to the respective “Getting Started” Manual for Updating driver of the I-
7188EG, I-7188XG & Wincon-8xx7.

Our newly released driver can also be obtained from the following website.
http://www.icpdas.com/products/8000/isagraf.htm

Warning:
The copyright of the firmware and the ISaGRAF embedded driver belongs to ICP DAS CO.,
LTD. Only the I-8417, 8817, 8437 and 8837 have registered a legal ISaGRAF Target license.
To burn an ISaGRAF embedded driver into other controllers is absolutely illegal and may be
punished by law.

Make sure of your current OS & driver version before you upgrade it.

1. Create a file folder named "8000" in your hard drive. For example, "c:\8000".

*** We use driver 2.50 as an example in this document.

For Windows NT, Windows 2000, Windows XP users:
2. Copy \Napdos\ISaGRAF\8000\Driver\2.50\"7188xw.exe", "7188xw.ini" , "isa.exe" ,
 "autoexec.bat" & "8k031105.IMG" from the CD_ROM into your "8000" folder.
3. Run "\8000\7188xw.exe" in your hard drive. A "7188xw" screen will appear (Press F1
 for help).

For Dos, Windows 95, 98 users:
2. Copy \Napdos\ISaGRAF\8000\Driver\2.50\"7188x.exe", "7188x.ini" , "isa.exe" ,
 "autoexec.bat" & "8k031105.IMG" from the CD_ROM into your "8000" folder.
3. Run "\8000\7188x.exe" in your hard drive. A "7188x" screen will appear.

4. Link COM1 or COM2 of your PC to COM1 of the I-8xx7 controller through a RS232 cable.

5. Power off the I-8xx7 controller, connect pin "INIT" to "INIT COM" and then power it up.

6. If the connection is Ok, messages will appear on the 7188x screen.
 8000>

7. Type "ver" to see the current OS version.
 8000> ver

8. Type "isa *p=" to see the version No. & COMM setting of the ISaGRAF driver
 8000> isa *p=

http://www.icpdas.com/products/8000/isagraf.htm

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 429

To upgrade an ISaGRAF embedded driver, follow the following steps.

9. Power off the I-8xx7 controller, connect pin "INIT" to "INIT COM" and then power it up.

10. The OS image should upgrade first. Type "upload" to load the OS image
 8000> upload

 press at ALT+E and type in the image name (for version 2.50 - 8k031105.IMG)

 and then type "bios1"

 8000> bios1
 (WAIT ABOUT 30 SEC. ***DO NOT REMOVE THE POWER IN THESE 30 SEC.***)

11. To upgrade the ISaGRAF driver. Type "del" and reply "y" to delete the current driver.
 8000> del
 Total File number is 2, do you really want to delete(y/n)? y

12. Type "load", then press ALT_E and then type "autoexec.bat" .
 8000> load
 File will save to 8000:0000
 StartAddr-->7000:FFFF
 Press ALT_E to download file!
 Input filename:autoexec.bat

13. Type "load" again, then press ALT_E and then type "isa.exe". Wait util it finished.
 8000> load
 File will save to 8003:0002
 StartAddr-->8000:0031
 Press ALT_E to download file!
 Input filename:isa.exe

14. Type "dir" to make sure "autoexec.bat" and "isa.exe" are well burned.
 8000> dir

15. Press ALT_X to exit "7188x".

16. Remove the connection between "INIT" - "INIT COM", reset the I-8xx7 controller.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 430

Appendix C.1: Setting I-8xx7 & I-7188EG’s COM1 As
None-Modbus-Slave port
COM1 of the I-8417/8817/8437/8837, I-7188EG supports Modbus RTU Slave protocol by
default. User may change it to a None-Modbus-Slave port for other usage. For example, user
may write his own defined protocol on COM1 or use COM1 as a Modbus Master port.

1. Create a file folder named "8000" in your hard drive.
 For example, "c:\8000".

For Windows NT, Windows 2000 & Windows XP Users:
2. Copy CD-ROM: \Napdos\ISaGRAF\8000\Driver\7188xw.exe, 7188xw.ini
 from the CD_ROM into your "8000" folder.
3. Run "\8000\7188xw.exe" in your hard drive. A "7188xw" screen will appear.

For Dos, Windows 95 & Windows 98 Users:
2. Copy CD-ROM: \Napdos\ISaGRAF\8000\Driver\7188x.exe, 7188x.ini
 from the CD_ROM into your "8000" folder.
3. Run "\8000\7188x.exe" in your hard drive. A "7188x" screen will appear.

4. Link from COM1 or COM2 of PC to COM1 of the I-8417/8817/8437/8837 (or I-7188EG) by a
RS232 cable.

5. Power off the I-8417/8817/8437/8837 (or I-7188EG), connect pin "INIT" to "INIT COM", then
power it up.

6. If the connection is Ok, messages will appear on the 7188x screen.

 8000>

7. Type "isa *f=1" to free COM1 (set COM1 as none-Modbus-Slave port)
 (For I-7188EG, type “isa7188e *f=1”)

 8000> isa *f=1

8.Press ALT_X to exit "7188x", or COM1/COM2 of the PC will be occupied.

9. Remove the connection between "INIT" - "INIT COM", recycle the power of the controller.

Important Note:
If user wants COM1 to be back to a Modbus RTU Slave port again, follow the same step 1 to 6
& then type "isa *f=0" as below. (For I-7188EG, type “isa7188e *f=0”))

 8000> isa *f=0

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 431

Appendix D: Table of The Analog IO Value

I-87013, I-7013, I-7033
Range Code
(Hex) RTD Type Data Format Max Value Min Value

Input Range (Celsius) +100.0 -100.0
Decimal Value +32767 -3276820

(Default)
Platinum 100
a = 0.00385

2's complement HEX 7FFF 8000
Input Range (Celsius) +100.0 +0.0
Decimal Value +32767 +021 Platinum 100

a = 0.00385
2's complement HEX 7FFF 0000
Input Range (Celsius) +200.0 +0.0
Decimal Value +32767 +022 Platinum 100

a = 0.00385
2's complement HEX 7FFF 0000
Input Range (Celsius) +600.0 +0.0
Decimal Value +32767 +023 Platinum 100

a = 0.00385
2's complement HEX 7FFF 0000
Input Range (Celsius) +100.0 -100.0
Decimal Value +32767 -3276824 Platinum 100

a = 0.003916
2's complement HEX 7FFF 8000
Input Range (Celsius) +100.0 +0.0
Decimal Value +32767 +025 Platinum 100

a = 0.003916
2's complement HEX 7FFF 0000
Input Range (Celsius) +200.0 +0.0
Decimal Value +32767 +026 Platinum 100

a = 0.003916
2's complement HEX 7FFF 0000
Input Range (Celsius) +600.0 +0.0
Decimal Value +32767 +027 Platinum 100

a = 0.003916
2's complement HEX 7FFF 0000
Input Range (Celsius) +100.0 -80.0
Decimal Value +32767 -26214028 Nickel 120
2's complement HEX 7FFF 999A
Input Range (Celsius) +100.0 +0.0
Decimal Value +32767 +029 Nickel 120
2's complement HEX 7FFF 0000
Input Range (Celsius) +600.0 -200.0
Decimal Value +32767 -109222A Platinum 1000

a = 0.00385
2's complement HEX 7FFF D556

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 432

I-8017H
* Each channel can be configured to different range ID

Range Code
(Hex) Data Format Max value Min value

Input Range +2.5 V -2.5 V
Decimal Value +32767 -3276805
2's Complement HEX 7FFF 8000
Input Range +20.0 mA -20.0 mA
Decimal Value +32767 -3276806
2's Complement HEX 7FFF 8000
Input Range +1.25 V -1.25 V
Decimal Value +32767 -3276807
2's Complement HEX 7FFF 8000
Input Range +10.0 V -10.0 V
Decimal Value +32767 -3276808

(Default)
2's Complement HEX 7FFF 8000
Input Range +5.0 V -5.0 V
Decimal Value +32767 -3276809
2's Complement HEX 7FFF 8000

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 433

I-87017, I-7017

Range Code
(Hex) Data Format Max value Min value

Input Range +10.0 V -10.0 V
Decimal Value +32767 -3276808

(Default)
2's Complement HEX 7FFF 8000
Input Range +5.0 V -5.0 V
Decimal Value +32767 -3276809
2's Complement HEX 7FFF 8000
Input Range +1.0 V -1.0 V
Decimal Value +32767 -327680A
2's Complement HEX 7FFF 8000
Input Range +500.0 mV -500.0 mV
Decimal Value +32767 -327680B
2's Complement HEX 7FFF 8000
Input Range +150.0 mV -150.0 mV
Decimal Value +32767 -327680C
2's Complement HEX 7FFF 8000
Input Range

(with 125 ohms resistor)
+20.0 mA -20.0 mA

Decimal Value +32767 -327680D

2's Complement HEX 7FFF 8000

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 434

I-87018, I-7011, I-7018

Range Code
(Hex) Data Format Max value Min value

Input Range -15.0 mV -15.0 mV
Decimal Value +32767 -3276800
2's Complement HEX 7FFF 8000
Input Range +50.0 mV -50.0 mV
Decimal Value +32767 -3276801
2's Complement HEX 7FFF 8000
Input Range +100.0 mV -100.0 mV
Decimal Value +32767 -3276802
2's Complement HEX 7FFF 8000
Input Range +500.0 mV -500.0 mV
Decimal Value +32767 -3276803
2's Complement HEX 7FFF 8000
Input Range +1.0 V -1.0 V
Decimal Value +32767 -3276804
2's Complement HEX 7FFF 8000
Input Range +2.5V -2.5V
Decimal Value +100.00 -100.0005

(Default)
2's Complement HEX 7FFF 8000
Input Range +20.0 mA -20.0 mA
Decimal Value +32767 -3276806
2's Complement HEX 7FFF 8000

Range Code
(Hex)

Thermocouple
Type Data Format Max Value Min Value

Input Range (Celsius) +760.0 -210.0
Decimal Value +32767 -90540E J Type
2's Complement HEX 7FFF DCA2
Input Range (Celsius) +1372.0 -270.0
Decimal Value +32767 -64480F K Type
2's Complement HEX 7FFF E6D0
Input Range (Celsius) +400.0 -270.0
Decimal Value +32767 -2211810 T Type
2's Complement HEX 7FFF A99A

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 435

Input Range (Celsius) +1000.0 -270.0
Decimal Value +32767 -884711 E Type
2's Complement HEX 7FFF DD71
Input Range (Celsius) +1768.0 +0.0
Decimal Value +32767 +012 R Type
2's Complement HEX 7FFF 0000
Input Range (Celsius) +1768.0 +0.0
Decimal Value +32767 +013 S Type
2's Complement HEX 7FFF 0000
Input Range (Celsius) +1820.0 +0.0
Decimal Value +32767 +014 B Type
2's Complement HEX 7FFF 0000
Input Range (Celsius) +1300.0 -270.0
Decimal Value +32767 -680515 N Type
2's Complement HEX 7FFF E56B
Input Range (Celsius) +2320.0 +0.0
Decimal Value +32767 +016 C Type
2's Complement HEX 7FFF 0000
Input Range (Celsius) +800.0 -200.0
Decimal Value +32767 -819217 L Type
2's Complement HEX 7FFF E000
Input Range (Celsius) +100.0 -200.0
Decimal Value +16384 -3276818 M Type
2's Complement HEX 4000 8000
Input Range (Celsius) +900.0 -200.0
Decimal Value +32767 -728119 L Type

DIN43710
2's Complement HEX 7FFF E38F

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 436

I-7021

Range
Code (Hex) Data Format Max Value Min Value

Output Range +20.0 mA +0.0 mA
Decimal Value +32767 +030
2's complement HEX 7FFF 0000
Output Range +20.0 mA +4.0 mA
Decimal Value +32767 +031
2's complement HEX 7FFF 0000
Output Range +10.0 V +0.0 V
Decimal Value +32767 +032

(Default)
2's complement HEX 7FFF 0000

I-7022

Range Type
(Hex) Data Format Max Value Min Value

Output Range +20.0 mA +0.0 mA
Decimal Value +32767 +00
2's complement HEX 7FFF 0000
Output Range +20.0 mA +4.0 mA
Decimal Value +32767 +01
2's complement HEX 7FFF 0000
Output Range +10.0 V +0.0 V
Decimal Value +32767 +02

(Default)
2's complement HEX 7FFF 0000

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 437

I-8024
* Each channel can be configured to different range ID

Range Code
(Hex) Data Format Max Value Min Value

Output Range +20.0 mA +0.0 mA
30

Decimal Value +32767 +0
Output Range +10.0 V -10.0 V

33
Decimal Value +32767 -32768

I-87024, I-7024

Range
Code (Hex) Data Format Max Value Min Value

Output Range +20.0 mA +0.0 mA
30

Decimal Value +32767 +0
Output Range +20.0 mA +4.0 mA

31
Decimal Value +32767 +0
Output Range +10.0 V +0.0 V

32
Decimal Value +32767 +0
Output Range +10.0 V -10.0 V33

(Default) Decimal Value +32767 -32768
Output Range +5.0 V +0.0 V

34
Decimal Value +32767 +0

Output Range +5.0 V -5.0 V
35

Decimal Value +32767 -32768

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 438

Appendix E: LANGUAGE REFERENCE

copyright AlterSys
printed with permission

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 439

ISaGRAF
Version 3.46

LANGUAGE REFERENCE

AlterSys Inc.
Information in this document is subject to change without notice and does not represent a
commitment on the part of AlterSys Inc. The software, which includes information contained in
any databases, described in this document is furnished under a license agreement or
nondisclosure agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the
license or nondisclosure agreement. No part of this manual may be reproduced in any form or
by any means, electronic or mechanical, including photocopying and recording, for any
purpose without the express written permission of AlterSys Inc.

© 1994 - 2002 AlterSys Inc. All rights reserved.
Published in Canada by AlterSys Inc.

ISaGRAF is a registered trademark of AlterSys Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
OS-9 and ULTRA-C are registered trademarks of Microware Corporation.
VxWorks and Tornado are registered trademarks of Wind River Systems, Inc.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 440

E.1 Project architecture
An ISaGRAF project is divided into several programming units called programs. The programs
of the project are linked together in a tree-like architecture. Programs can be described using
any of SFC, FC (Flow Chart), FBD, LD, ST or IL graphic or literal languages.

E.1.1 Programs

A program is a logical programming unit, which describes operations between variables of the
process. Programs describe either sequential or cyclic operations. Cyclic programs are
executed at each target system cycle. The execution of sequential programs follows the
dynamic rules of either the SFC language or the FC language.

Programs are linked together in a hierarchy tree. Programs placed on the top of the hierarchy
are activated by the system. Sub-programs (lower level of the hierarchy) are activated by their
father. A program can be described with any of the available graphic or literal following
languages:

Sequential Function Chart (SFC) for high level programming
Flow Chart (FC) for high level programming
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

The same program cannot mix several languages, except LD and FBD can be combined in one
diagram.

E.1.2 Cyclic and sequential operations

The hierarchy of programs is divided into four main sections or groups:

Begin programs executed at the beginning of each target cycle
Sequential programs following SFC or FC dynamic rules
End programs executed at the end of each target cycle
Functions set of non-dedicated sub-programs

Programs of the 'Begin' or 'End' sections describe cyclic operations, and are not time
dependent. Programs of the 'Sequential' section describe sequential operations, where the
time variable explicitly synchronises basic operations. Main programs of the 'Begin' section are
systematically executed at the beginning of each run time cycle. Main programs of the 'End'
section are systematically executed at the end of each run time cycle. Main programs of the
'Sequential' section are executed according to either the SFC or the FC dynamic rules.

Programs of the "Functions" section are sub-programs that can be called by any other
program in the project. A program of the "Function" section can call another program of this
section.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 441

Main and child programs of the sequential section must be described with SFC or FC language.
Programs of cyclic sections (begin and end) cannot be described with SFC or FC language.
Any program of any section may own one or more sub-programs. Any program of the
sequential section may own one or more SFC or FC child programs (according to its own
programming language). Sub-programs cannot be described with SFC or FC language.

Programs of the Begin section are typically used to describe preliminary operations on input
devices to build high level filtered variables. Such variables are frequently used by the
programs of the Sequential section. Programs of the End section are typically used to
describe security operations on the variables operated on by the Sequential section, before
sending values to output devices.

E.1.3 Child SFC and FC programs

Any SFC program of the sequential section may control other SFC programs. Such low-level
programs are called child SFC programs. A child SFC program is a parallel program that
can be started, killed, frozen or restarted by its parent program. The parent program and child
program must both be described with the SFC language. A child SFC program may have local
variables and defined words.

When a parent program starts a child SFC program, it puts an SFC token (activates) into each
initial step of the child program. This command is described with the GSTART statement.
When a parent program kills a child SFC program, it clears all the tokens existing in the steps
of the child. Such a command is described with the GKILL statement.

When a parent program freezes a child SFC program, it suspends its execution. The
suspended program can then be restarted using the GRST statement.

Any FC program of the sequential section may control other FC sub-programs. An FC father
program is blocked (waits) during execution of an FC sub-program. It is not possible that
simultaneous operations are done in father FC program and one of its FC sub-programs.

E.1.4 Functions and sub-programs

A sub-program or a function execution is driven by its parent program. The execution of the
parent program is suspended until the sub-program or the function ends:

mainsub-programs

Any program of any section may have one or more sub-programs. A sub-program is owned by
only one father program. A sub-program may have local variables and defines. Any language
but SFC or FC can be used to describe a sub-program. Programs of the "Functions" section
are sub-programs that can be called by any other program in the project. Unlike other sub-

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 442

programs, they are not dedicated to one father program. A program of the "Function" section
can call another program of this section. A function can be located in the Library.

Warning: The ISaGRAF system does not support recursive function calls. A run time error
will occur if a program of the "Functions" section is called by itself or by one of its called sub-
program.
Warning: A function or sub-program does not "store" the local value of its local variables. A
function or sub-program is not instantiated and so can not call function blocks.

The interface of a sub-program must be explicitly defined, with a type and a unique name for
each of its calling or return parameter. In order to support the ST language convention, the
return parameter must have the same name as the sub-program.

The following table shows how to set the value of the return parameter in the body of a sub-
program, in the different languages:

ST: assign the return parameter using its name
(the same name as the sub-program):

 subprog_name := <expression>;

IL: the value of the current result (IL register)
at the end of the sequence is stored in the return parameter:

 LD 10
 ADD 20 (* return parameter value = 30 *)

FBD: set the return parameter using its name:

&
>=1

subprog_name

LD:use a coil symbol with the name of the return parameter:

subprog_name

E.1.5 Function blocks

Function blocks can use the languages: LD, FBD, ST or IL. Function blocks are instantiated. It
means local variables of a function block are copied for each instance. When calling a block in
a program, you actually call the instance of the block: the same code is called but the data used
are the one which have been allocated for the instance. Values of the variables of the instance
are stored from one cycle to the other.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 443

(* ST programming *)

(* FB1 is a declared instance
of the SAMPLE function block *)

FB1(high, value, low, 1.0);
high_alarm := FB1.QH;
low_alarm := FB1.QL;
any_alarm := FB1.Q;

Function Block
implementation

Code INSTANCE
DATA

Warnings:
- A function block written with one of the IEC languages can not call other function blocks: the
instantiation mechanism only manages the local variables of the block itself. Here is the list of
standard function blocks that you cannot use inside an IEC function block:
SR, RS, R_Trig, F_Trig, SEMA, CTU, CTD, CTUD, TON, TOF, TP, CMP, StackInt, AVERAGE,
HYSTER, LIM_ALRM, INTEGRAL, DERIVATE, BLINK, SIG_GEN

- For the same reason, you can not use Positive or Negative contact or coils, or Set and Reset
coils.

- TSTART and TSTOP functions to start and stop timers cannot be used in a function block for
3.0x targets. It works since the 3.20 target.

- When you need loop in your function block, you must use local variable before doing the loop.
See the example below:

This will not work: This is OK:

>=

>=1

&

>=

>=1
& IntResult

E.1.6 Description language

A program can be described with any of the following graphic or literal languages:

Sequential Function Chart (SFC) for high level operations
Flow Chart (FC) for high level operations
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 444

The same program cannot mix several languages. The language used to describe a program is
chosen when the program is created, and cannot be changed later on. The exception is that it is
possible to combine FBD and LD in a single program.

E.1.7 Execution rules

ISaGRAF is a synchronous system. All the operations are triggered by a clock. The basic
duration of the clock is called the cycle timing:

Programmed Used Free
Cycle
timing :

Basic operations processed during a target cycle are:

Scan INPUT variables

ISaGRAF
target cycle

Process Begin section programs

Process Sequential section programs
according to SFC/FC evolution rules

Process End section programs

Update OUTPUT devices

This system makes it possible to:

- guarantee that an input variable keeps the same value within a cycle,
- guarantee that an output device is not updated more than once in a cycle,
- work safely on the same global variable from different programs,
- estimate and control the response time of the complete application.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 445

E.2 Common objects
These are main features and common objects of the ISaGRAF programming database. Such
objects can be used in any program written with any of the SFC, FC, FBD, LD, ST or IL
languages.

E.2.1 Basic types

Any constant, expression or variable used in a program (written in any language) must be
characterised by a type. Type coherence must be followed in graphic operations and literal
statements. These are the available basic types for programming objects:

BOOLEAN: logic (true or false) value
ANALOG: integer or real (floating) continuous value
TIMER: time value
MESSAGE: character string

Note: Timers contain values less than one day and cannot be used to store dates.

E.2.2 Constant expressions

Constant expressions are relative to one type. The same notation cannot be used to represent
constant expressions of different types.

E.2.2.1 Boolean constant expressions

There are only two boolean constant expressions:

TRUE is equivalent to the integer value 1
FALSE is equivalent to the integer value 0

"True" and "False" keywords are case insensitive.

E.2.2.2 Integer analog constant expressions

Integer constant expressions represent signed long integer (32 bit) values: from -2147483647
to +2147483647. Integer analog constants may be expressed with one of the following bases.
Integer constants must begin with a prefix that identifies the bases used:

Base Prefix Example
DECIMAL (none) -908

HEXADECIM
AL

"16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402
BINARY "2#" 2#1101_0001_0101_110

1

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 446

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance, and is used to increase constant expression readability.

E.2.2.3 Real analog constant expressions

Real analog constant expressions can be written with either decimal or scientific
representation. The decimal point ('.') separates the integer and decimal parts. The decimal
point must be used to differentiate a real constant expression from an integer one. The
scientific representation uses the 'E' or 'F' letter to separate the mantissa part and the
exponent. Exponent part of a real scientific expression must be a signed integer value from -
37 to +37. Below are examples of real analog constant expressions:

3.14159 -1.0E+12
+1.0 1.0F-15
-789.56 +1.0E-37

The expression "123" does not represent a real constant expression. Its correct real
representation is "123.0".

E.2.2.4 Timer constant expressions

Timer constant expressions represent time values from 0 second to 23h59m59s999ms. The
lowest allowed unit is a millisecond. Standard time units used in constant expressions are:

Hour The "h" letter must follow the number of hours
Minute The "m" letter must follow the number of minutes
Second The "s" letter must follow the number of seconds
Millisecond The "ms" letters must follow the number of milliseconds

The time constant expression must begin with "T#" or "TIME#" prefix. Prefixes and unit letters
are case insensitive. Some units may not appear. These are examples of timer constant
expressions:

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The expression "0" does not represent a time value, but an analog constant.

E.2.2.5 Message string constant expressions

String or message constant expressions represent character strings. Characters must be
preceded by a quote and followed by an apostrophe. For example:

'THIS IS A MESSAGE'

Warning: The apostrophe ''' character cannot be used within a string constant expression. A
string constant expression must be expressed on one line of the program source code. Its
length cannot exceed 255 characters, including spaces.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 447

Empty string constant expression is represented by two apostrophes, with no space or tab
character between them:

'' (* this is an empty string *)

The special character dollar ('$'), followed by other special characters, can be used in a string
constant expression to represent a non-printable character:

Sequen
ce

Meaning ASCII
(hexa)

Example

$$ '$'
character

16#24 'I paid $$5 for
this'

$' apostroph
e

16#27 'Enter $'Y$' for
YES'

$L line feed 16#0a 'next $L line'
$R carriage

return
16#0d ' llo $R He'

$N new line 16#0d
0a

'This is a line$N'

$P new page 16#0c 'lastline $P first
line'

$T tabulation 16#09 'name$Tsize$Td
ate'

$hh (*) any
character

16#hh 'ABCD =
$41$42$43$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

E.2.3 Variables

Variables can be LOCAL to one program, or GLOBAL. Local variables can be used by one
program only. Global variables can be used in any program of the project. Variable names must
conform to the following rules:

name cannot exceed 16 characters
first character must be a letter
following characters can be letters, digits or the underscore character

E.2.3.1 Reserved keywords

A list of the reserved keywords is shown below. Such identifiers cannot be used to name a
program, a variable or a "C" function or function block:

A ANA, ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT, ATAN,
B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING, BCD_TO_TIME, BOO,

BOOL, BOOL_TO_BCD, BOOL_TO_INT, BOOL_TO_REAL, BOOL_TO_STRING,
BOOL_TO_TIME, BY, BYTE,

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 448

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,
D DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,
E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF, END_PROGRAM,

END_REPEAT, END_RESSOURCE, END_STRUCT, END_TYPE, END_VAR,
END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FEDGE, FIND, FOR, FUNCTION,
G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,
I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL, INT_TO_STRING,

INT_TO_TIME,
J JMP, JMPC, JMPCN, JMPN, JMPNC,
L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,
M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,
N NE, NOT,
O OF, ON, OPERATE, OR, OR_MASK, ORN,
P PROGRAM
R R, REDGE, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD, REAL_TO_BOOL,

REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME, REDGE, REPEAT, REPLACE,
RESSOURCE, RET, RETAIN, RETC, RETCN, RETN, RETNC, RETURN, RIGHT, ROL,
ROR,

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,
STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL, STRING_TO_TIME,
STRUCT, SUB, SYS_ERR_READ, SYS_ERR_TEST, SYS_INITALL, SYS_INITANA,
SYS_INITBOO, SYS_INITTMR, SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO,
SYS_RESTTMR, SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR,
SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM, SYS_TOVERFLOW,
SYS_TRESET, SYS_TWRITE, SYSTEM,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD, TIME_TO_BOOL, TIME_TO_INT,
TIME_TO_REAL, TIME_TO_STRING, TMR, TO, TOD, TRUE, TSTART, TSTOP, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,
V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,

VAR_INPUT, ,VAR_OUTPUT,
W WHILE, WITH, WORD,
X XOR, XOR_MASK, XORN

All keywords beginning with an underscore ('_') character are internal keywords and must not
be used in textual instructions.

E.2.3.2 Directly represented variables

ISaGRAF enables the use of directly represented variables in the source of the programs to
represent a free channel. Free channels are the ones which are not linked to a declared I/O
variable. The identifier of a directly represented variable always begins with "%" character.

Below are the naming conventions of a directly represented variable for a channel of a single
board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.c free channel of a boolean input board
%IDs.c free channel of an integer input board
%ISs.c free channel of a message input board
%QXs.c free channel of a boolean output board
%QDs.c free channel of an integer output board

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 449

%QSs.c free channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of a complex
equipment. "s" is the slot number of the equipment. "b" is the index of the single board within
the complex equipment. "c" is the number of the channel.

%IXs.b.c free channel of a boolean input board
%IDs.b.c free channel of an integer input board
%ISs.b.c free channel of a message input board
%QXs.b.c free channel of a boolean output board
%QDs.b.c free channel of an integer output board
%QSs.b.c free channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.

E.2.3.3 Boolean variables

Boolean means logic. Such variables can take one of the boolean values: TRUE or FALSE.
Boolean variables are typically used in boolean expressions. Boolean variables can have one
of the following attributes:

Internal: memory variable updated by the program
Constant: read-only memory variable with an initial value
Input: variable connected to an input device (refreshed by the system)
Output: variable connected to an output device

Warning: When declaring a boolean variable, strings can be defined to replace 'true' and 'false'
values during debug. Those strings cannot be used in the programs unless entered as 'defined
words' for the language.

E.2.3.4 Analog variables

Analog means continuous. Such variables have signed integer or real (floating) values.
Available formats for an analog variable are:

Integer 32 bit signed integer: from -2147483647 to +2147483647
Real standard IEEE 32 bit floating value (single precision)

1 sign bit + 23 mantissa bits + 8 exponent bits

REAL analog exponent value cannot be less than -37 or greater than +37. Analog variables can
have one of the following attributes:

Internal memory variable updated by the program

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 450

Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

Note: When a real variable is connected to an I/O device, the corresponding I/O driver operates
the equivalent integer value.

Warning: Integer and real analog variables or constant expressions cannot be mixed in the
same analog expression.

E.2.3.5 Timer variables

Timer means clock or counter. Such variables have time values and are typically used in time
expressions. A timer value cannot exceed 23h59m59s999ms and cannot be negative. Timer
variables are stored in 32 bit words. The internal representation is a positive number of
milliseconds.
Timer variables can have one of the following attributes:

Internal memory variable managed by the program, refreshed by ISaGRAF system
Constant: read-only memory variable with an initial value

Warning: Timer variables cannot have the INPUT or OUTPUT attributes.

Timer variables can be automatically refreshed by the ISaGRAF system. When a timer is
active, its value is automatically increased according to the target system real time clock. The
following statements of the ST language can be used to control a timer:

TSTART starts automatic refresh of a timer
TSTOP stops automatic refresh of a timer

E.2.3.6 Message string variables

Message or string variables contain character strings. The length of the string can change
during process operations. The length of a message variable cannot exceed the capacity
(maximum length) specified when the variable is declared. Message capacity is limited to 255
characters. Message variables can have one of the following attributes:

Internal memory variable updated by the program
Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

String variables can contain any character of the standard ASCII table (ASCII code from 0 to
255). The null character can exist in a character string. Some "C" functions of the standard
ISaGRAF library will not correctly operate messages which contain null (0) characters.

E.2.4 Comments

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 451

Comments may be freely inserted in literal languages such as ST and IL. A comment must
begin with the special characters "(*" and terminate with the characters "*)". Comments can be
inserted anywhere in a ST program, and can be written on more than one line.

These are examples of comments:

counter := ivalue; (* assigns the main counter *)
(* this is a comment expressed
on two lines *)
c := counter (* you can put comments anywhere *) + base_value + 1;

Interleave comments cannot be used. This means that the "(*" characters cannot be used
within a comment.

Warning: The IL language only accepts comments as the last component of an instruction line.

E.2.5 Defined words

The ISaGRAF system allows the re-definition of constant expressions, true and false boolean
expressions, keywords or complex ST expressions. To achieve this, an identifier name has to
be given to the corresponding expression. For example:

YES is TRUE
PI is 3.14159
OK is (auto_mode AND NOT (alarm))

When such equivalence is defined, its identifier can be used anywhere in an ST program to
replace the attached expression. This is an example of ST programming using defines:

If OK Then
 angle := PI / 2.0;
 isdone := YES;
End_if;

Defined words can be LOCAL to one program, GLOBAL, or COMMON.
Local defined words can be used by only one program.
Global defined words can be used in any program of the project.
Common defined words can be used in any program of any project.
Note that common defined can be stored separately with the Archive manager.

Warning: When the same identifier is defined twice with different ST equivalencies, the last
defined expression is used. For example:

Define: OPEN is FALSE
OPEN is TRUE

means: OPEN is TRUE

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 452

Naming defined words must conform to following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters can be letters, digits or underscore ('_') character

Warning: A defined word can not use a defined word in its definition, for example, you can not
have:

PI is 3.14159
PI2 is PI*2

write the complete equivalence using constants or variables and operations:
PI2 is 6.28318

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 453

E.3 SFC language
Sequential Function Chart (SFC) is a graphic language used to describe sequential
operations. The process is represented as a set of well-defined steps, linked by transitions.
A boolean condition is attached to each transition. Actions within the steps are detailed by
using other languages (ST, IL, LD and FDB).

E.3.1 SFC chart main format

An SFC program is a graphic set of steps and transitions, linked together by oriented links.
Multiple connection links are used to represent divergences and convergences. Some parts of
the complete program may be separated and represented in the main chart by a single symbol,
called macro steps. The basic graphic rules of the SFC are:
- A step cannot be followed by another step
A transition cannot be followed by another transition

E.3.2 SFC basic components

The basic components (graphic symbols) of the SFC language are: steps and initial steps,
transitions, oriented links, and jumps to a step.

E.3.2.1 Steps and initial steps

A step is represented by a single square. Each step is referenced by a number, written in the
step square symbol. A main description of the step is written in a rectangle linked to the step
symbol. This description is a free comment (not part of the programming language). The
above information is called the Level 1 of the step:

102 Start motor 1

Reference number

Comment

At run time, a token indicates that the step is active:

Active step: Inactive step:

102 Start motor 1 214 Weighing

The initial situation of an SFC program is expressed with initial steps. An initial step has a
double-bordered graphic symbol. A token is automatically placed in each initial step when the
program is started.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 454

Initial step:

Start motor 11

An SFC program must contain at least one initial step.

These are the attributes of a step. Such fields may be used in any of the other languages:
GSnnn.xactivity of the step (boolean value)
GSnnn.t...........activation duration of the step (time value)
(where nnn is the reference number of the step)

E.3.2.2 Transitions

Transitions are represented by a small horizontal bar that crosses the connection link. Each
transition is referenced by a number, written next to the transition symbol. A main description
of the transition is written on the right side of the transition symbol. This description is a free
comment (not part of the programming language). The above information is called the Level 1
of the transition:

Weighing command

Reference number

Comment

102

E.3.2.3 Oriented links

Single lines are used to link steps and transitions. These are oriented links. When the
orientation is not explicitly given, the link is oriented from the top to the bottom.

100

Explicit orientation
from transition 11

to setp 100
Implicit orientation
from step 100 to
transition 10

101
10

11

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 455

E.3.2.4 Jump to a step

Jump symbols may be used to indicate a connection link from a transition to a step, without
having to draw the connection line. The jump symbol must be referenced with the number of
the destination step:

Jump to step 102

102

A jump symbol cannot be used to represent a link from a step to a transition. Example of jumps
- the following charts are equivalent:

1

2

30 31

1

1

2

30 31

1

E.3.3 Divergences and convergences

Divergences are multiple connection links from one SFC symbol (step or transition) to many
other SFC symbols. Convergences are multiple connection links from more than one SFC
symbols to one other symbol. Divergences and convergences can be single or double.

E.3.3.1 single divergences

A single divergence is a multiple link from one step to many transitions. It allows the active
token to pass into one of a number of branches. A single convergence is a multiple link from
many transitions to the same step. A single convergence is generally used to group the SFC
branches which were started on a single divergence. Single divergences and convergences
are represented by single horizontal lines.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 456

Single divergence

Single convergence

Warning: The conditions attached to the different transitions at the beginning of a single
divergence are not implicitly exclusive. The exclusivity has to be explicitly detailed in the
conditions of the transitions to ensure that only one token progresses in one branch of the
divergence at run time. Below is an example of single divergence and convergence:

(* SFC program with single divergence and convergence *)

1 Initialize

1
Run & not Error

101
Error

2 Start Motor M1 101 Alarm

2
M1 started

102
Acknowledge

3 Start timer

3
timer > t#3s

4 Stop motor M1

4
M1 stopped

1

E.3.3.2 Double divergences

A double divergence is a multiple link from one transition to many steps. It corresponds to
parallel operations of the process. A double convergence is a multiple link from many steps to
the same transition. A double convergence is generally used to group the SFC branches
started on a double divergence. Double divergences and convergences are represented by
double horizontal lines.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 457

Double divergence

Double convergence

Example of double divergence and convergence:

(* SFC program with double divergence and convergence *)

1 Initialize

1
Run

2 Process1 101 Process2

2
End of Process 1

101
End of Process 2

3 Wait for process 2 102 Wait for process 2

3
true

1
E.3.4 Macro steps
A macro step is a unique representation of a unique group of steps and transitions. The body of
the macro step is described separately, elsewhere in the same SFC program. It appears as a
single symbol in the main SFC chart. This is the symbol used for a macro step:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 458

102 Process A

Reference number

Comment

The reference number written in the macro step symbol is the reference number of the first step
in the body of the macro step. The macro step body must begin with a beginning step and
terminate with an ending step. The chart must be self-contained. A beginning step has no
upper link (no backward transition). An ending step has no lower link (no forward transition). A
macro step symbol may be put in the body of another macro step.

Warning: Because macro step is a unique set of steps and transitions, the same macro step
cannot be used more than once in an SFC program.

Example of macro step:
(* SFC program with macro step *)
(* Main chart *)(* Body of the macro step *)

1 Initialize 201 Fill WUnit

201
unit full

1
Error

101
Run & not Error 202 Weigh

2 Alarm 201 Weighing
202

weighing done

2
Ack

102
true 203 Empty WUnit

203
unit empty

1
204 Store weight

E.3.5 Actions within the steps

The level 2 of an SFC step is the detailed description of the actions executed during the step
activity. This description is made by using SFC literal features, and other languages such as
Structured Text (ST). The basic types of actions are:
- Boolean actions
- Pulse actions programmed in ST
- Non-stored actions programmed in ST
- SFC actions

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 459

Several actions (with same or different types) can be described in the same step. The special
features that enable the use of any of the other languages are:
- Calling sub-programs
- Instruction List (IL) language convention

E.3.5.1 Boolean actions

Boolean actions assign a boolean variable with the activity of the step. The boolean variable
can be an output or an internal. It is assigned each time the step activity starts or stops. This is
the syntax of the basic boolean actions:

<boolean_variable> (N) ; assigns the step activity signal to the variable
<boolean_variable> ; same effect (N attribute is optional)
/ <boolean_variable> ; assigns the negation of the step activity signal to the variable

Other features are available to set or reset a boolean variable, when the step becomes active.
This is the syntax of set and reset boolean actions:

<boolean_variable> (S) ; sets the variable to TRUE when the step activity signal becomes
TRUE

<boolean_variable> (R) ; resets the variable to FALSE when the step activity signal becomes
TRUE

The boolean variable must be an OUTPUT or an INTERNAL. The following SFC programming
leads to the following behaviour:

Boolean actions

Bdirect(N) ;
/Binvert ;
Bset(S) ;
Breset(R) ;

10
GS10.X

(step activity)

Bdirect

Binvert

Bset

Breset

Example of boolean actions:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 460

(* SFC program using BOOLEAN actions *)

1 led1(R); led4(S); group12(R);

1
2 led1 (N); group12 (S);

2
GS2.t > t#1s;

3 led2;

3
GS3.t > t#2s;

4 led3; group12 (R);

4
GS4.t > t#1s;

2

E.3.5.2 Pulse actions

A pulse action is a list of ST or IL instructions, which are executed only once at the activation
of the step. Instructions are written according to the following SFC syntax:

ACTION (P) :
(* ST statements *)

END_ACTION ;

The following shows the results of a pulse action:

Step activity

Execution

Example of pulse action:

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (P);
 nb_edge := nb_edge + 1;
End_action;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 461

E.3.5.3 Non-stored actions

A non-stored (normal) action is a list of ST or IL instructions which are executed at each cycle
during the whole active period of the step. Instructions are written according to the following
SFC syntax:

ACTION (N) :
(* ST statements *)

END_ACTION ;

The following is the results of a non-stored action:

Step activity

Execution

Example of non-stored action:

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (N):
 If (nb_egde < 10) then
 nb_edge := nb_edge + 1;
 End_if;
End_action;

E.3.5.4 SFC actions

An SFC action is a child SFC sequence, started or killed according to the change of the step
activity signal. An SFC action can have the N (Non stored), S (Set), or R (Reset) qualifier. This
is the syntax of the basic SFC actions:

<child_prog> (N); starts the child sequence when the step becomes active, and kills the child
sequence when the step becomes inactive

<child_prog> ; same effect (N attribute is optional)
<child_prog> (S); starts the child sequence when the step becomes active. Nothing is done

when the step becomes inactive
<child_prog> (R); kills the child sequence when the step becomes active. Nothing is done

when the step becomes inactive

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 462

The SFC sequence specified as an action must be a child SFC program of the program
currently being edited. Note that using the S (Set) or R (Reset) qualifiers for an SFC action has
exactly the same effect as the GSTART and GKILL statements, programmed in an ST pulse
action.
Below is an example of an SFC action. The main SFC program is named Father. It has two
SFC children, called SeqMlx and SeqPump. The SFC programming of the father SFC
program is:

(* SFC program using SFC actions *)

1

1
Start;

2 SeqMlx (N); 101 SeqPump (S);

101
Full;

102 SeqPump (R);

2

1

E.3.5.5 Calling function and function blocks from an action

Sub-programs, functions or function blocks (written in ST, IL, LD or FBD language) or "C"
functions and "C" function blocks, can be directly called from an SFC action block, based on the
following syntax:

For sub-programs, functions and "C" functions:
ACTION (P) :

result := sub_program () ;
END_ACTION;

or

ACTION (N) :
result := sub_program () ;

END_ACTION;

For function blocks in "C" or in ST, IL, LD, FBD:
ACTION (P) :

Fbinst(in1, in2);
result1 := Fbinst.out1;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 463

result2 := Fbinst.out2;
END_ACTION;

or

ACTION (N) :
Fbinst(in1, in2);
result1 := Fbinst.out1;
result2 := Fbinst.out2;

END_ACTION;

Detailed syntax can be found in the ST language section.
Example of a sub-program call in action blocks:

(* SFC program with a sub-program call in an action block *)

1 Action (P):
 init := SPInit ();
End_action;

Init = OK;

E.3.5.6 IL convention

Instruction List (IL) programming may be directly entered in an SFC action block, based on the
following syntax:

ACTION (P) : (* or N *)
#info=IL
 <instruction>
 <instruction>

#endinfo
END_ACTION;

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the keywords.
Below is an example of an IL program in an action block:

(* SFC program with an IL sequence in an action block *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 464

1 Action (P):
#info=IL
 LD False
 ST Led1
 ST Led2
#endinfo
End_action;

E.3.6 Conditions attached to transitions

At each transition, a boolean expression is attached that conditions the clearing of the
transition. The condition is usually expressed with ST language or using the LD language
(Quick LD editor). This is the Level 2 of the transition. Other structures may, however, be used:

- ST language convention
- LD language convention
- IL language convention
- Calling function from a transition

Warning: When no expression is attached to the transition, the default condition is TRUE.

E.3.6.1 ST convention

The Structured Text (ST) language can be used to describe the condition attached to a
transition. The complete expression must have boolean type and must be terminated by a
semicolon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
boolean variable, or a combination of variables that leads to a boolean value. Below is an
example of ST programming for transitions:

(* SFC program with ST programming for transitions *)

1

Run & not Error;

E.3.6.2 LD convention

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The diagram is composed of only one rung with one coil. The coil value represents
the transition value. Below is an example of LD programming for transitions:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 465

1 Run Error

E.3.6.3 IL convention

Instruction List (IL) programming may be directly used to describe an SFC transition, according
to the following syntax:

#info=IL
<instruction>
<instruction>
....

#endinfo
The value contained by the current result (IL register) at the end of the IL sequence causes
the resulting of the condition to be attached to the transition:

current result = 0 � condition is FALSE
current result <> 0 � condition is TRUE

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the keywords.
Below is an example of IL programming for transitions:

(* SFC program with an IL program for transitions *)
1

#info=IL
 LD Run
 &N Error
#endinfo

E.3.6.4 Calling functions from a transition

Any sub-program or a function (written in FBD, LD, ST or IL language), or a "C" function can be
called to evaluate the condition attached to a transition, according to the following syntax:

< sub_program > () ;

The value returned by the sub-program or the function must be boolean and yields the resulting
condition:

return value = FALSE� condition is FALSE
return value = TRUE � condition is TRUE

Example of a sub-program called in a transition:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 466

(* SFC program with sub-program call for transitions *)

1

EvalCond ();

E.3.7 SFC dynamic rules

The five dynamic rules of the SFC language are:

 Initial situation
The initial situation is characterised by the initial steps which are, by definition, in the
active state at the beginning of the operation. At least one initial step must be present in
each SFC program.

 Clearing of a transition
A transition is either enabled or disabled. It is said to be enabled when all immediately
preceding steps linked to its corresponding transition symbol are active, otherwise it is
disabled. A transition cannot be cleared unless:
 - it is enabled, and
 - the associated transition condition is true.

 Changing of state of active steps
The clearing of a transition simultaneously leads to the active state of the immediately
following steps and to the inactive state of the immediately preceding steps.

 Simultaneous clearing of transitions
Double lines may be used to indicate transitions which have to be cleared
simultaneously. If such transitions are shown separately, the activity state of preceding
steps (GSnnn.x) can be used to express their conditions.

 Simultaneous activation and deactivation of a step
If, during operation, a step is simultaneously activated and deactivated, priority is given
to the activation.

E.3.8 SFC program hierarchy

The ISaGRAF system enables the description of the vertical structure of SFC programs. SFC
programs are organised in a hierarchy tree. Each SFC program can control (start, kill...) other
SFC programs. Such programs are called children of the SFC program which controls them.
SFC programs are linked together into a main hierarchy tree, using a "father - child" relation:

FATHER program

CHILD program

The basic rules implied by the hierarchy structure are:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 467

- SFC programs which have no father are called "main" SFC programs
- Main SFC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can only be controlled by its father
- A program cannot control the children of one of its own children

The basic actions that a father SFC program can take to control its child program are:

Start (GSTART) Starts the child program: activates each of its initial steps. Children of
this child program are not automatically started.

Kill (GKILL) Kills the child program by deactivating each of its active steps. All the children of
the child program are also killed.

Freeze (GFREEZE) Suspends the execution of the program (deactivates actions of each
of the active steps and suspend transition calculation), and memorises the status
of the program steps so the program can be restarted. All the children of the child
program are also frozen.

Restart (GRST) Restarts a frozen SFC program by reactivating all the suspended steps.
Children of the program are not automatically restarted.

Get status (GSTATUS) Gets the current status (active, inactive or frozen) of a child program.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 468

E.4 Flow Chart language

Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow Chart
diagram is composed of Actions and Tests. Between Actions and test are oriented links
representing data flow. Multiple connection links are used to represents divergences and
convergences. Actions and Tests can be described with ST, LD or IL languages. Functions and
Function blocks of any language (except SFC) can be called from actions and tests. A Flow
Chart program can call another Flow Chart program. The called FC program is a sub-program
of the calling FC program.

E.4.1 FC components

Below are graphic components of the Flow Chart language:
Beginning of FC chart

A "begin" symbol must appear at the beginning of a Flow Chart program. It is unique and
cannot be omitted. It represents the initial state of the chart when it is activated. Below is the
drawing of a "begin" symbol:

Begin

The "Begin" symbol always has a connection (on the bottom) to the other objects of the chart. A
flow chart is not valid if no connection is drawn from "Begin" to another object.

Ending of FC chart
An "end" symbol must appear at the end of a Flow Chart program. It is unique and cannot be
omitted. It is possible that no connection is drawn to the "End" symbol (always looping chart),
but "End" symbol is still drawn anyway at the bottom of the chart. It represents the final state of
the chart, when its execution has been completed. Below is the drawing of an "end" symbol:

End

The "End" symbol generally has a connection (on the top) to the other objects of the chart. A
flow chart may have no connection to the "End" object (always looping chart). The "End" object
is still visible at the bottom of the chart in this case.

FC flow links
A flow link is a line that represents a flow between two points of the diagram. A link is always
terminated by an arrow. Below is the drawing of a flow link:

Two links cannot start from the same source connection point.
FC actions

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 469

An action symbol represents actions to be performed. An action is identified by a number and
a name. Below is the drawing of an "action" symbol:

nn: Name

Two different objects of the same chart cannot have the same name or logical number.
Programming language for an action can be ST, LD or IL. An action is always connected with
links, one arriving to it, one starting from it.

FC conditions
A condition represents a boolean test. A condition is identified by a number and a name.
According to the evaluation of attached ST, LD or IL expression, the flow is directed to "YES" or
"NO" path. Below are the possible drawings for a condition symbol:

nn: Name NO

YES

nn: NameNO

YES

nn: Name YES

NO

nn: NameYES

NO

Two different objects of the same chart cannot have the same name or logical number. The
programming of a test is either
- an expression in ST, or
- a single rung in LD, with no symbol attached to the unique coil, or
- several instructions in IL. The IL register (or current result) is used to evaluate the condition.

When programmed in ST text, the expression may optionally be followed by a semicolon.
When programmed in LD, the unique coil represents the condition value. A condition equal to:
- 0 or FALSE directs the flow to NO
- 1 or TRUE directs the flow to YES

A test is always connected with an arriving link, and both forward connections must be defined.
FC sub-program

The system enables the description of the vertical structure of FC programs. FC programs are
organised in a hierarchy tree. Each FC program can call other FC programs. Such a program
is called a child program of the FC program which calls them. FC programs which call FC
sub-programs are called father program. FC programs are linked together into a main
hierarchy tree, using a "father - child" relation:

FATHER program

CHILD program

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 470

A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program.
Execution of the calling FC program is suspended till the sub-program execution is complete. A
Flow Chart sub-program is identified by a number and a name, as other programs, functions or
function blocks. Below is the drawing of a "sub-program call" symbol:

nn: SpName

Two different objects of the same chart cannot have the same logical number. The basic rules
implied by the FC hierarchy structure are:
- FC programs which have no father are called main FC programs.
- Main FC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can be called only by its father
- A program cannot call the children of one of its own children

The same sub-program may appear several times in the father chart. A Flow Chart sub-
program call represents the complete execution of the sub chart. The father chart execution is
suspended during the child chart is performed. The sub-program calling blocks must follow the
same connection rules as the ones defined for action.

FC I/O specific action
An I/O specific action symbol represents actions to be performed. As other actions, an I/O
specific action is identified by a number and a name. The same semantic is used on standard
actions and I/O specific actions. The aim of I/O specific actions is only to make the chart more
readable and to give focus on non-portable parts of the chart. Using I/O specific actions is an
optional feature. Below is the drawing of an "I/O specific action" symbol:

nn: Name

I/O specific blocks have exactly the same behaviour as standard actions. This covers their
properties, ST, LD or IL programming, and connection rules.

FC connectors
Connectors are used to represent a link between two points of the diagram without drawing it.
A connector is represented as a circle and is connected to the source of the flow. The drawing
of the connector is completed, on the appropriate side (depending on the direction of the data
flow), by the identification of the target point (generally the name of the target symbol). Below is
the standard drawing of a connector:

 nn: Name

A connector always targets a defined Flow Chart symbol. The destination symbol is identified
by its logical number.

FC comments

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 471

A comment block contains text that has no sense for the semantic of the chart. It can be
inserted anywhere on an unused space of the Flow Chart document window, and is used to
document the program. Below is the drawing of a "comment" symbol:

comment text can
be on several lines...

E.4.2 FC complex structures

This section shows complex structure examples that can be defined in a Flow Chart diagram.
Such structures are combinations of basic objects linked together.

IF / THEN / ELSE

(1) place for "THEN" actions to be inserted
(2) place for "ELSE" actions to be inserted

REPEAT / UNTIL

(3) place for repeated actions to be inserted

WHILE / DO

(3) place for repeated actions to be inserted

E.4.3 FC dynamic behaviour

The execution of a Flow Chart diagram can be explained as follows:

- The Begin symbol takes one target cycle
- The End symbol takes one target cycle and ends the execution of the chart. After this symbol
is reached, no more actions of the chart are executed.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 472

- The flow is broken each time an item (action, decision) is encountered that has already been
reached in the same cycle. In such a case the flow will continue on the next cycle.

Note: Contrary to SFC, an action is not a stable state. There is no repetition of instructions while
the action symbol is highlighted.

E.4.4 FC checking

Apart of attached ST, LD or IL programming, some other syntactic rules apply to flow chart
itself. Below is the list of main rules:
- All "connection" points of all symbols must be wired. (connection to "End" symbol may be
omitted)
- All symbols must be linked together (no isolated part should appear)
- All connectors should have valid destination

Other minor syntax errors can be reported:
- Empty actions (no programming) are considered as steps during run time scheduling
- Empty tests (no programming) are considered as "always true"

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 473

E.5 FBD language

The Functional Block Diagram (FBD) is a graphic language. It allows the programmer to build
complex procedures by taking existing functions from the ISaGRAF library and wiring them
together in the graphic diagram area.

E.5.1 FBD diagram main format

FBD diagram describes a function between input variables and output variables. A function
is described as a set of elementary function blocks. Input and output variables are connected
to blocks by connection lines. An output of a function block may also be connected to an input
of another block.

{ }
Function

Inputs Outputs

An entire function operated by an FBD program is built with standard elementary function
blocks from the ISaGRAF library. Each function block has a fixed number of input connection
points and a fixed number of output connection points. A function block is represented by a
single rectangle. The inputs are connected on its left border. The outputs are connected on its
right border. An elementary function block performs a single function between its inputs and
its outputs. The name of the function to be performed by the block is written in its rectangle
symbol. Each input or output of a block has a well-defined type.

{ }Inputs Outputs&

Name of the function

Input variables of an FBD program must be connected to input connection points of function
blocks. The type of each variable must be the same as the type expected for the associated
input. An input for FBD diagram can be a constant expression, any internal or input variable,
or an output variable.

Output variables of an FBD program must be connected to output connection points of function
blocks. The type of each variable must be the same as the type expected for the associated
block output. An Output for FBD diagram can be any internal or output variable, or the name
of the program (for sub-programs only). When an output is the name of the currently edited
sub-program, it represents the assignment of the return value for the sub-program (returned to
the calling program).

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 474

Input and output variables, inputs and outputs of the function blocks are wired together with
connection lines. Single lines may be used to connect two logical points of the diagram:
- An input variable and an input of a function block
- An output of a function block and an input of another block
- An output of a function block and an output variable

The connection is oriented, meaning that the line carries associated data from the left
extremity to the right extremity. The left and right extremities of the connection line must be of
the same type.

Multiple right connection can be used to broadcast an information from its left extremity to each
of its right extremities. All the extremities of the connection must be of the same type.

E.5.2 RETURN statement

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a boolean
output connection point of a function block. The RETURN statement represents a conditional
end of the program: if the output of the box connected to the statement has the boolean value
TRUE, the end (remaining part) of the diagram is not executed.

(* Example of an FBD program using RETURN statement *)

auto_mode
alarm

>=1

RETURN

bi10
bi23

x_cmd

&
>=1

bo67

(* ST equivalence: *)
If auto_mode OR alarm Then

Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

E.5.3 Jumps and labels

Labels and jumps are used to control the execution of the diagram. No other object may be
connected on the right of a jump or label symbol. The following notations are used:

>>LABjump to a label (label name is "LAB")
LAB:definition of a label (label name is "LAB")

If the connection line on the left of the jump symbol has the boolean state TRUE, the execution
of the program directly jumps after the corresponding label symbol.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 475

(* Example of an FBD program using labels and jumps *)

manual
b1

&

NOMODIF

input1
input2 result

NOMODIF:

result
valid cmd10

>=1

>=1

(* IL Equivalence: *)
ld manual
and b1
jmpc NOMODIF
ld input1
or input2
st result

NOMODIF: ld result
or valid
st cmd10

E.5.4 Boolean negation

A single connection line with its right extremity connected to an input of a function block can be
terminated by a boolean negation. The negation is represented by a small circle. When a
boolean negation is used, the left and right extremities of the connection line must have the
BOOLEAN type.

(* Example of an FBD program using a boolean negation *)

input1
input2 output1

&

(* ST equivalence: *)
output1 := input1 AND NOT (input2);

E.5.5 Calling function or function blocks from the FBD

The FBD language enables the calling of sub-programs, functions or function blocks. A sub-
program, or function or function block is represented by a function box. The name written in the
box is the name of the sub-program or function or function blocks.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 476

In case of a sub-program or a function, the return value is the only output of the function box.
A function block can have more than one output.

(* Example of an FBD program using SUB PROGRAM block *)

Weighing
mode

delta net_w

mode
delta

net_weight

=
IN1

IN2 Q0

+

tare_weight weight

RETURN

(* ST Equivalence *)
net_weight := Weighing (mode, delta); (* call sub-program *)
If (net_weight = 0) Then Return; End_if;
weight := net_weight + tare_weight;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 477

E.6 LD language

Ladder Diagram (LD) is a graphic representation of boolean equations, combining contacts
(input arguments) with coils (output results). The LD language enables the description of tests
and modifications of boolean data by placing graphic symbols into the program chart. LD
graphic symbols are organized within the chart exactly as an electric contact diagram. LD
diagrams are connected on the left side and on the right side to vertical power rails. These are
basic graphic components of an LD diagram:

Left vertical power rail

Right vertical power rail

Horizontal connection line

Vertical connection line

Multiple connection lines (all connected together)

Contact associated with a variable

Coil associated to an output or to an internal variable

E.6.1 Power rails and connection lines

An LD diagram is limited on the left and right side by vertical lines, named left power rail and
right power rail respectively.

Right power rail
Left power rail

LD diagram graphic symbols are connected to power rails or to other symbols by connection
lines. Connection lines are horizontal or vertical.

Horizontal connection lines

Vertical connection
with OR meaning

Vertical
connection line

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 478

Each line segment has a boolean state FALSE or TRUE. The boolean state is the same for all
the segments directly linked together. Any horizontal line connected to the left vertical power
rail has the TRUE state.

E.6.2 Multiple connection

The boolean state given to a single horizontal connection line is the same on the left and on the
right extremities of the line. Combining horizontal and vertical connection lines enables the
building of multiple connections. The boolean state of the extremities of a multiple connection
follows logic rules.

A multiple connection on the left combines more than one horizontal lines connected on the
left side of a vertical line, and one line connected on its right side. The boolean state of the
right extremity is the LOGICAL OR between all the left extremities.

(* Example of multiple LEFT connection *)

v1

v2

v3

(* right extremity state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the left side of
a vertical line, and more than one line connected on its right side. The boolean state of the left
extremity is propagated into each of the right extremities.

(* Example of multiple RIGHT connection *)
input1 output1

output2

(* ST equivalence: *)
output1 := input1;
output2 := input1;

A multiple connection on the left and on the right combines more than one horizontal line
connected on the left side of a vertical line, and more than one line connected on its right side.
The boolean state of each of the right extremities is the LOGICAL OR between all the left
extremities

(* Example of multiple LEFT and RIGHT connection *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 479

input1

input2

output1

output2

output3

(* ST Equivalence: *)
output1 := input1 OR input2;
output2 := input1 OR input2;
output3 := input1 OR input2;

E.6.3 Basic LD contacts and coils

There are several symbols available for input contacts:
- Direct contact
- Inverted contact
- Contacts with edge detection

There are several symbols available for output coils:
- Direct coil
- Inverted coil
- SET coil
- RESET coil
- Coils with edge detection

The name of the variable is written above any of these graphic symbols:
Direct contact

A direct contact enables a boolean operation between a connection line state and a boolean
variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the value of the variable associated with the contact.

(* Example using DIRECT contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := input1 AND input2;

Inverted contact

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 480

An inverted contact enables a boolean operation between a connection line state and the
boolean negation of a boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the boolean negation of the value of the variable
associated with the contact.

(* Example using INVERTED contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := NOT (input1) AND NOT (input2);

Contact with rising edge detection
This contact (positive) enables a boolean operation between a connection line state and the
rising edge of a boolean variable.

boo_variable

Left connection Right connection
P

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. It is reset to FALSE in all other cases.

(* Example using RISING EDGE contacts *)

input1 input2 output1
P

(* ST Equivalence: *)
output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

Contact with falling edge detection
This contact (negative) enables a boolean operation between a connection line state and
the falling edge of a boolean variable.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 481

boo_variable

Left connection Right connection
N

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE to
FALSE. It is reset to FALSE in all other cases.

(* Example using FALLING EDGE contacts *)

input1 input2 output1
N

(* ST Equivalence: *)
output1 := input1 AND (NOT (input2) AND input2prev);
(* input2prev is the value of input2 at the previous cycle *)

Direct coil
Direct coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean state of the left connection. The state
of the left connection is propagated into the right connection. The right connection may be
connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using DIRECT coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := input1;
output2 := input1;

Inverted coil
Inverted coils enable a boolean output according to the boolean negation of a connection
line state.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 482

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using INVERTED coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := NOT (input1);
output2 := input1;

SET coil
"Set" coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
S

The associated variable is SET TO TRUE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a
"RESET" coil. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 483

 output1 := TRUE;
END_IF;
IF input2 THEN
 output1 := FALSE;
END_IF;

RESET coil
"Reset" coils enable boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
R

The associated variable is RESET TO FALSE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a "SET"
coil. The state of the left connection is propagated into the right connection. Right connection
may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN
 output1 := TRUE;
END_IF;
IF input2 THEN
 output1 := FALSE;
END_IF;

Coil with rising edge detection
"Positive" coils enable boolean output of a connection line boolean state. This type of coils
are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
P

The associated variable is set to TRUE when the boolean state of the left connection rises
from FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 484

left connection is propagated into the right connection. Right connection may be connected to
the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
P

(* ST Equivalence: *)
IF (input1 and NOT(input1prev)) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

Coil with falling edge detection
"Negative" coils enable boolean output of a connection line boolean state. This type of coils
are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
N

The associated variable is set to TRUE when the boolean state of the left connection falls
from TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the
left connection is propagated into the right connection. Right connection may be connected to
the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
N

(* ST Equivalence: *)
IF (NOT(input1) and input1prev) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 485

E.6.4 RETURN statement

The RETURN label can be used as an output to represent a conditional end of the program. No
connection can be put on the right of a RETURN symbol.

RETURN

If the left connection line has the TRUE boolean state, the program ends without executing
the equations entered on the following lines of the diagram.
Note: When the LD program is a sub-program, its name has to be associated with an output coil
to set the return value (returned to the calling program).

(* Example using RETURN symbol *)

manual mode
RETURN

input1 input2

input3

result

(* ST Equivalence: *)
If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;

E.6.5 Jumps and labels

Labels, conditional and unconditional JUMPS symbols, can be used to control the execution of
the diagram. No connection can be put on the right of the label and jump symbol. The following
notations are used:

>>LABjump to label named "LAB"
LAB:definition of the label named "LAB"

If the connection on the left of the jump symbol has the TRUE boolean state, the program
execution is driven after the label symbol.

(* Example using JUMP and LABEL symbols *)

manual_mode

input1 result

OTHER

OTHER:
input2 result

END

END:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 486

(* IL Equivalence: *)
ldn manual_mode
jmpc other
ld input1
st result
jmp END

OTHER: ld input2
st result

END: (* end of program *)

E.6.6 Blocks in LD

Using the Quick LD editor, you connect function boxes to boolean lines. A function can actually
be an operator, a function block or a function. As all blocks do not have always a boolean input
and/or a boolean output, inserting blocks in an LD diagram leads to the addition of new
parameters EN, ENO to the block interface. The EN, ENO parameters are not added if you use
the FBD/LD editor as you can connect the variable with the required type.

The "EN" input
On some operators, functions or function blocks, the first input does not have boolean data type.
As the first input must always be connected to the rung, another input is automatically inserted
at the first position, called "EN". The block is executed only if the EN input is TRUE. Below is the
example of a comparison operator, and the equivalent code expressed in ST:

IF rung_state THEN
q := (value1 > value 2);

ELSE
q := FALSE;

END_IF;
(* continue rung with q state *)

The "ENO" output
On some operators, functions or function blocks, the first output does not have boolean data
type. As the first output must always be connected to the rung, another output is automatically
inserted at the first position, called "ENO". The ENO output always takes the same state as the
first input of the block. Below is an example with AVERAGE function block, and the equivalent
code expressed in ST:

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;
(* continue rung with eno state *)

The "EN" and "ENO" parameters

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 487

On some cases, both EN and ENO are required. Below is an example with an arithmetic
operator, and the equivalent code expressed in ST:

IF rung_state THEN
result := (value1 + value2);

END_IF;
eno := rung_state;
(* continue rung with eno state *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 488

E.7 ST language

ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily
expressed with graphic languages. ST is the default language for the description of the actions
within the steps and conditions attached to the transitions of the SFC language.

E.7.1 ST main syntax

An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language
keywords...) are separated with inactive separators (space character, end of line or tab stops)
or by active separators, which have a well defined significance (for example, the ">"
separator indicates a "greater than" comparison. Comments may be freely inserted into the text.
A comment must begin with "(*" and ends with "*)". Each statement terminates with a semi-
colon (";") separator. These are basic types of ST statements:

- assignment statement (variable := expression;)
- sub-program or function call
- function block call
- selection statements (IF, THEN, ELSE, CASE...)
- iteration statements (FOR, WHILE, REPEAT...)
- control statements (RETURN, EXIT...)
- special statements for links with other languages such as SFC

Inactive separators may be freely entered between active separators, constant expressions
and identifiers. ST inactive separators are: Space (blank) character, Tabs and End of line
character. Unlike line-formatted languages such as IL, end of lines may be entered anywhere in
the program. The rules shown below should be followed when using inactive separators to
increase ST program readability:

- Do not write more than one statement on one line
- Use tabs to indent complex statements
- Insert comments to increase readability of lines or paragraphs

E.7.1 Expression and parentheses

ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same type as its operands, and can be used in a more
complex expression. For example :

(boo_var1 AND boo_var2) has BOO type
not (boo_var1) has BOO type
(sin (3.14) + 0.72) has REAL ANALOG type
(t#1s23 + 1.78) is an invalid expression

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 489

Parentheses are used to isolate sub parts of the expression, and to explicitly order the priority
of the operations. When no parentheses are given for a complex expression, the operation
sequence is implicitly given by the default priority between ST operators. For example:

2 + 3 * 6 equals 2+18=20 because multiplication operator has a higher priority

(2+3) * 6 equals 5*6=30 priority is given by parenthesis

Warning: A maximum number of 8 levels of parentheses can be nested within an expression.

E.7.3 Function or function block calls

Standard ST function calls may be used for each of following objects:
- Sub-programs
- Library functions and function blocks written in IEC languages
- "C" functions and function blocks
- Type conversion functions

Calling sub-programs or functions
Name: name of the called sub-program

or library function written in IEC language or in "C"
Meaning: calls a ST, IL, LD or FBD sub-program or function or a "C" function

and gets its return value
Syntax: <variable> := <subprog> (<par1>, ... <parN>);
Operands: The type of return value and calling parameters must follow

the interface defined for the sub-program.
Return value: value returned by the sub-program

Sub-program calls may be used in any expression. They also may be used in an SFC
transition.

Example1: Sub-program call

(* Main ST program *)
(* gets an analog value and converts it into a limited time value *)
ana_timeprog := SPlimit (tprog_cmd);
appl_timer := tmr (ana_timeprog * 100);

(* Called FBD program named 'SPlimit' *)

min_value

Input_value

max_value

min

IN1

IN2 Q

max

IN1

IN2 Q SPlimit

Example2: Function call

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 490

(* functions used in complex expressions: min, max, right, mlen and left are standard "C"
functions *)
limited_value := min (16, max (0, input_value));
rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Calling function blocks
Name: name of the function block instance
Meaning: calls a function block from the ISaGRAF library or from the user's library and

accesses its return parameters
Syntax: (* call of the function block *)

<blockname> (<p1>, <p2> ...);
(gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type
of the parameters specified for that function block

Return value: See Syntax to get the return parameters.

Consult the ISaGRAF library to find the meaning and type of each function block parameter.
The function block instance (name of the copy) must be declared in the dictionary

Example :

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;

E.7.4 ST specific boolean operators

The following boolean operators are specific to the ST language:
- REDGE rising edge detection
- FEDGE falling edge detection

Other standard boolean operators such as:
- NOT boolean negation
- AND (&) logical AND
- OR logical OR
- XOR logical exclusive OR
can be used. Their description is to be found in the section 'Standard operators, function blocks
and functions'.

"REDGE" operator

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 491

Name: REDGE
Meaning: evaluates the rising edge of a complete boolean expression
Syntax: <edge> := REDGE (<boo_expression>,<memo_variable>);
Operands: first operand is any boolean variable or complex expression

second operand is an internal boolean variable used to store the last state of the
expression

Return value: TRUE when the expression changes from FALSE to TRUE
FALSE for all other cases

The rising edge of an expression cannot be detected more than once in the same execution
cycle, using the REDGE operator. This operator can be used to describe the condition attached
to an SFC transition.

Warning: The "memory" boolean variable used to store the last state of the expression cannot
be used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the REDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other REDGE evaluations.

Example:

(* ST program using REDGE operator *)

(* this program counts the rising edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If REDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of R_TRIG standard
block. It has been kept for compatibility reasons.

"FEDGE" operator
Name: FEDGE
Meaning: evaluates the falling edge of a boolean expression
Syntax: <edge> := FEDGE (<boo_expression>, <memo_variable>);
Operands: first operand is any boolean variable or complex expression

second operand is an internal boolean variable used to store
the last state of the expression

Return value: TRUE when the expression changes from TRUE to FALSE
FALSE for all other cases

The falling edge of an expression cannot be detected more than once in the same execution
cycle, using the REDGE operator. The operator can be used to describe the condition attached
to an SFC transition.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 492

Warning: The "memory" boolean variable used to store the last state of the expression cannot
be used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the FEDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other FEDGE evaluations.

Example:

(* ST program using FEDGE operator *)

(* this program counts the falling edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If FEDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of F_TRIG standard
block. It has been kept for compatibility reasons.

E.7.5 ST basic statements

The basic statements of the ST language are:
- Assignment
- RETURN statement
- IF-THEN-ELSIF-ELSE structure
- CASE statement
- WHILE iteration statement
- REPEAT iteration statement
- FOR iteration statement
- EXIT statement

Assignment
Name: :=
Meaning: assigns a variable to an expression
Syntax: <variable> := <any_expression> ;
Operands: variable must be internal or output

variable and expression must have the same type

The expression can be a call to a sub-program or a function from the ISaGRAF library

Example:

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 493

(* variable <<= expression *)
bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with sub-program return value *)
rc := PSelect ();

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

RETURN statement
Name: RETURN
Meaning: terminates the execution of the current program
Syntax: RETURN ;
Operands: (none)

In an SFC action block, the RETURN statement indicates the end of the execution of that block
only.

Example:

(* FBD specification of the program: programmable counter *)

CU

RESET

PV

Q

CV

CTU

(* ST implementation of the program, using RETURN statement *)

If not (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if R then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 494

IF-THEN-ELSIF-ELSE statement
Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF
Meaning: executes one of two lists of ST statements

selection is made according to the value
of a boolean expression

Syntax: IF <boolean_expression> THEN
 <statement> ;
 <statement> ;
 ...
ELSIF <boolean_expression> THEN
 <statement> ;
 <statement> ;
 ...
ELSE
 <statement> ;
 <statement> ;
 ...
END_IF;

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no
instruction is executed when the condition is FALSE.

Example:

(* ST program using IF statement *)

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;

END_IF;

(* IF structure without ELSE *)
If overflow THEN

alarm_level := true;
END_IF;

CASE statement
Name: CASE ... OF ... ELSE ... END_CASE
Meaning: executes one of several lists of ST statements

selection is made according to an integer expression
Syntax: CASE <integer_expression> OF

 <value> : <statements> ;
 <value> , <value> : <statements> ;
 ...
ELSE

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 495

 <statements> ;

END_CASE;

Case values must be integer constant expressions. Several values, separated by comas, can
lead to the same list of statements. The ELSE statement is optional.

Example:

(* ST program using CASE statement *)

CASE error_code OF
255: err_msg := 'Division by zero';

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;
WHILE statement

Name: WHILE ... DO ... END_WHILE
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated BEFORE any iteration
Syntax: WHILE <boolean_expression> DO

 <statement> ;
 <statement> ;
 ...
END_WHILE ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during WHILE iterations. The change of state of an input variable cannot be used to describe
the condition of a WHILE statement.

Example:

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
string := string + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;
REPEAT statement

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 496

Name: REPEAT ... UNTIL ... END_REPEAT
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated AFTER any iteration
Syntax: REPEAT

 <statement> ;
 <statement> ;
 ...
UNTIL <boolean_condition>
END_REPEAT ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during REPEAT iterations. The change of state of an input variable cannot be used to describe
the ending condition of a REPEAT statement.

Example:

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN

REPEAT
string := string + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;
FOR statement

Name: FOR ... TO ... BY ... DO ... END_FOR
Meaning: executes a limited number of iterations,

using an integer analog index variable
Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO

 <statement> ;
 <statement> ;
END_FOR;

Operands: index: internal analog variable increased at any loop
mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during FOR iterations.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 497

This is the "while" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
 <statement> ;
 <statement> ;
 index := index + step;
end_while;

Example:

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;
EXIT statement

Name: EXIT
Meaning: exit from a FOR, WHILE or REPEAT iteration statement
Syntax: EXIT;
Operands: (none)

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example:

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

E.7.6 ST extensions

The following functions are extensions of the ST language:

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 498

- TSTART - TSTOP: timer control

The following statements and functions are available to control the execution of the SFC child
programs. They may be used inside ACTION(): ... END_ACTION; blocks in SFC steps.

- GSTART starts an SFC program
- GKILL kills an SFC program
- GFREEZE freezes an SFC program
- GRST restarts a frozen SFC program
- GSTATUS gets current status of an SFC program

Warning: These functions are not in the IEC 1131-3 norm.
Easy equivalent can be found for GSTART and GKILL using the following syntax in the SFC
step:

child_name(S); (* equivalent to GSTART(child_name); *)
child_name(R); (* equivalent to GKILL(child_name); *)

The following fields can be used to access the status of an SFC step:
GSnnn.x boolean value that represents the activity of the step
GSnnn.t time elapsed since the last activation of the step

("nnn" is the reference number of the SFC step)

It is also possible to test the activity of a step declared in another SFC program, by using the
following syntax:

GSnnn(progname).x

Warning: referencing a step of an other program, using this syntax is not in the IEC 1131-3
norm. An easy way to do the same respecting IEC rules, is to declare a global boolean variable
in the dictionary which will represent the step activity to be tested (for example ref_step_X).
Then you insert in the step, the variable with the N qualifier (ref_step_X(N);). Then in the
program which wants to test the activity of the step, you use the variable.
Prog program the other program which needs step activity of Prog program

1

1
101

2 ref_step_X(N);
101

ref_step_X; (* = GS2(prog).X *)

2
102

TSTART statement
Name: TSTART
Meaning: starts the counting of a timer variable

timer value is not modified by the TSTART command, i.e. the counting starts from the
current value of the timer.

Syntax: TSTART (<timer_variable>);
Operands: any inactive timer variable

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 499

Return value: (none)

Example:

(* SFC program using TSTART and TSTOP statements *)

11 ACTION(P):
 TSTOP(tm_ctrl);
 alarm := not(bi100);
END_ACTION;

10 ACTION(P):
 bo100 := TRUE; (* boolean output *)
 tm_ctrl := t#0s;
 TSTART(tm_ctrl);
END_ACTION;

bi100 OR (tm_ctrl > time_out);

Time diagram if bi100 is always FALSE:

GS10.X

GS11.X

tm ctrl
timeout

0

The timer keeps the same value during one cycle.
TSTOP statement

Name: TSTOP
Meaning: stops updating a timer variable

timer value is not modified by the TSTOP command
Syntax: TSTOP (<timer_variable>);
Operands: any active timer variable
Return value: (none)

Example: See TSTART (the function is described above)

GSTART statement
Name: GSTART
Meaning: starts a child SFC program by putting a token

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 500

into each of its initial steps
Syntax: GSTART (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are not automatically started by the GSTART statement.
Note: As GSTART is not in the IEC 1131-3 norm, prefer the use of the S qualifier, with the
following syntax to start a child SFC:

Child_name(S);

Example: Use of GSTART and GKILL
(* Sequence 'Sfather' *) (* Sequence 'Schild' *)

1 1 Bo100;

1
Run_cmd;

1
GS1.t > t#2s;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

2 Bo101;

2
NOT (Run_cmd);

2
GS2.t > t#2s;

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

1

3
Run_cmd;

1

GKILL statement
Name: GKILL
Meaning: kills a child SFC program by removing the tokens

currently existing in its steps
Syntax: GKILL (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically killed with the specified program.
Note: As GKILL is not in the IEC 1131-3 norm, prefer the use of the R qualifier, with the
following syntax to kill a child SFC:

Child_name(R);

Example: See GSTART (function described above)
GFREEZE statement

Name: GFREEZE
Meaning: Suspends the execution of a child SFC program.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 501

Frozen program can be restarted by the GRST statement.
Syntax: GFREEZE (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically frozen along with the specified program.
Note: GFREEZE is not in the IEC 1131-3 norm.

Example:

1
Suspend_cmd;

2 ACTION(P):
 GFREEZE(Schild);
END_ACTION;

2
NOT (Suspend_cmd);

3 ACTION(P):
 GRST(Schild);
END_ACTION;

GRST statement
Name: GRST
Meaning: Restarts a child SFC program frozen by the GFREEZE statement.
Syntax: GRST (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically restarted by the GRST statement
Note: GRST is not in the IEC 1131-3 norm.

Example: See GFREEZE (function described above)
GSTATUS statement

Name: GSTATUS
Meaning: returns the current status of an SFC program
Syntax: <ana_var> := GSTATUS (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: 0 = program is inactive (killed)

1 = program is active (started)
2 = program is frozen

Note: GSTATUS is not in the IEC 1131-3 norm.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 502

Example:
1

1
Run_cmd;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

201 ACTION(N):
 if GSTATUS(Schild) = 0 then
 Mstat := 'Stopped';
 else
 Mstat := 'Running';
 end_if;
END_ACTION;2

NOT(Run_cmd);

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

3
Run_cmd;

2

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 503

E.8 IL language

Instruction List, or IL is a low level language. Instructions always relate to the current result
(or IL register). The operator indicates the operation that must be made between the current
value and the operand. The result of the operation is stored again in the current result.

E.8.1 IL main syntax

An IL program is a list of instructions. Each instruction must begin on a new line, and must
contain an operator, completed with optional modifiers and, if necessary, for the specific
operation, one or more operands, separated with commas (','). A label followed by a colon (':')
may precede the instruction. If a comment is attached to the instruction, it must be the last
component of the line. Comments always begin with '(*' and ends with '*)'. Empty lines may be
entered between instructions. Comments may be put on empty lines. Below are examples of
instruction lines:

Label Operator Operand Comments
Start: LD IX1 (* push button *)

ANDN MX5 (* command is not forbidden *)
ST QX2 (* start motor *)
Labels

A label followed by a colon (':') may precede the instruction. A label can be put on an empty line.
Labels are used as operands for some operations such as jumps. Naming labels must conform
to the following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters must be letters, digits or '_' character

The same name cannot be used for more than one label in the same IL program. A label can
have the same name as a variable.

Operator modifiers
The available operator modifiers are shown below. The modifier character must complete the
name of the operator, with no blank characters between them:

N boolean negation of the operand
(delayed operation
C conditional operation

The 'N' modifier indicates a boolean negation of the operand. For example, the instruction ORN
IX12 is interpreted as: result := result OR NOT (IX12).

The parenthesis '(' modifier indicates that the evaluation of the instruction must be delayed until
the closing parenthesis ')' operator is encountered.

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 504

The 'C' modifier indicates that the attached instruction must be executed only if the current
result has the boolean value TRUE (different than 0 for non-boolean values). The 'C' modifier
can be combined with the 'N' modifier to indicate that the instruction must be executed only if
the current result has the boolean value FALSE (or 0 for non-boolean values).

Delayed operations
Because there is only one IL register (current result), some operations may have to be delayed,
so that the execution order or the instructions can be changed. Parentheses are used to
indicate delayed operations:

'(' is a modifier indicates the operation to be
delayed

')' is an
operator

executes the delayed
operation

The opening parenthesis '(' modifier indicates that the evaluation of the instruction must be
delayed until the closing parenthesis ')' operator is encountered. For example, following
sequence:

AND(IX12
OR IX35
)

is interpreted as:

result := result AND (IX12 OR IX35)

E.8.2 IL operators

 The following table summarizes the standard operators of the IL language:

Opera
tor

Modifi
ers

Operand Description

LD N Variable, constant Loads operand
ST N Variable Stores current result
S
R

BOO variable
BOO variable

Sets to TRUE
Resets to FALSE

AND
&

OR
XOR

N (
N (
N (
N (

BOO
BOO
BOO
BOO

boolean AND
boolean AND
boolean OR
exclusive OR

ADD
SUB
MUL
DIV

(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant

Addition
Subtraction

Multiplication
Division

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 505

GT
GE
EQ
LE
LT
NE

(
(
(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant
variable, constant
variable, constant

Test: >
Test: >=
Test: =
Test <=
Test <

Test <>
CAL
JMP
RET

C N
C N
C N

Function block
instance name

Label

Calls a function block
Jumps to label

Returns from sub-
program

) Executes delayed
operation

In the next section, only operators which are specific to the IL language are described, other
standard operators can be found in the section "standard operators, function blocks and
functions".

LD operator
Operation loads a value in the current result
Allowed modifiers N
Operand constant expression

internal, input or output variable

Example:

(* EXAMPLES OF LD OPERATIONS *)
LDex: LD false (* result := FALSE boolean constant *)

LD true (* result := TRUE boolean constant *)
LD 123 (* result := integer constant *)
LD 123.1 (* result := real constant *)
LD t#3ms (* result := time constant *)
LD boo_var1 (* result := boolean variable *)
LD ana_var1 (* result := analog variable *)
LD tmr_var1 (* result := timer variable *)
LDN boo_var2 (* result := NOT (boolean variable) *)
ST operator

Operation stores the current result in a variable
the current result is not modified by this operation

Allowed modifiers N
Operand internal or output variable

Example:

(* EXAMPLES OF ST OPERATIONS *)
STboo: LD false

ST boo_var1 (* boo_var1 := FALSE *)
STN boo_var2 (* boo_var2 := TRUE *)

STana: LD 123

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 506

ST ana_var1 (* ana_var1 := 123 *)
STtmr: LD t#12s

ST tmr_var1 (* tmr_var1 := t#12s *)
S operator

Operation: stores the boolean value TRUE in a boolean variable, if the current result has
the boolean value TRUE. No operation is processed if current result is FALSE.
The current result is not modified by this operation

Allowed modifiers: (none)
Operand: output or internal boolean variable

Example:

(* EXAMPLES OF S OPERATIONS *)
SETex: LD true (* current result := TRUE *)

S boo_var1 (* boo_var1 := TRUE *)
(* current result is not modified *)

LD false (* current result := FALSE *)
S boo_var1 (* nothing done - boo_var1 unchanged *)
R operator

Operation stores the boolean value FALSE in a boolean variable, if the current result has
the boolean value TRUE. No operation is processed if current result is FALSE.
The current result is not modified by this operation

Allowed modifiers (none)
Operand output or internal boolean variable

Example:

(* EXAMPLES OF R OPERATIONS *)
RESETex:LD true (* current result := TRUE *)

R boo_var1 (* boo_var1 := FALSE *)
(* current result is not modified *)

ST boo_var2 (* boo_var2 := TRUE *)
LD false (* current result := FALSE *)
R boo_var1 (* nothing done - boo_var1 unchanged *)
JMP operator

Operation jumps to the specified label
Allowed modifiers C N
Operand label defined in the same IL program

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2) *)
(* to set one from 3 output booleans. Test "is equal to 0" is made with *)
(* the JMPC operator *)

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 507

JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
JMP JMPend (* end of the program *)

test1: LD selector
SUB 1 (* decrease selector: is now 0 or 1 *)
BOO (* conversion to boolean *)
JMPC test2 (* if selector = 0 then *)
LD true
ST bo1 (* bo1 := true *)
JMP JMPend (* end of the program *)

test2: LD true (* last possibility *)
ST bo2 (* bo2 := true *)

JMPend: (* end of the IL program *)
RET operator

Operation ends the current instruction list. If the IL sequence is a sub-program, the
current result is returned to the calling program

Allowed modifiers C N
Operand (none)

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2) *)
(* to set one from 3 output booleans. Test "is equal to 0" is made with *)
(* the JMPC operator *)

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)
JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
RET (* end - return 0 *)

(* decrease selector *)
test1: LD selector

SUB 1 (* selector is now 0 or 1 *)
BOO (* conversion to boolean *)
JMPC test2 (* if selector = 0 then *)
LD true
ST bo1 (* bo1 := true *)
LD 1 (* load real selector value *)
RET (* end - return 1 *)

(* last possibility *)
test2: RETNC (* returns if the selector has *)

(* an invalid value *)
LD true
ST bo2 (* bo2 := true *)
LD 2 (* load real selector value *)
 (* end - return 2 *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 508

")" operator
Operation executes a delayed operation. The delayed operation was notified by '('
Allowed modifiers (none)
Operand (none)

Example:

(* The following program interleaves delayed operations: *)
(* res := a1 + (a2 * (a3 - a4) * a5) + a6; *)

Delayed: LD a1(* result := a1; *)
ADD(a2 (* delayed ADD - result := a2; *)
MUL(a3 (* delayed MUL - result := a3; *)
SUB a4 (* result := a3 - a4; *)
) (* execute delayed MUL - result := a2 * (a3-a4); *)
MUL a5 (* result := a2 * (a3 - a4) * a5; *)
) (* execute delayed ADD *)

(* result := a1 + (a2 * (a3 - a4) * a5); *)
ADD a6 (* result := a1 + (a2 * (a3 - a4) * a5) + a6; *)
ST res (* store current result in variable res *)
Calling sub-programs or functions

A sub-program or a function (written in any of the IL, ST, LD, FBD or "C" language) is called
from the IL language, using its name as an operator.

Operation executes a sub-program or a function - the value returned by the sub-program
or function is stored into the IL current result

Allowed modifiers (none)
Operand The first calling parameter must be stored in the current result before the call.

The following ones are expressed in the operand field, separated by comas.

Example:

(* Calling program : converts an analog value into a time value *)

Main: LD bi0
SUBPRO bi1,bi2 (* call sub-program to get analog value *)
ST result (* result := value returned by sub-program *)
GT vmax (* test value overflow *)
RETC (* return if overflow *)
LD result
MUL 1000 (* converts seconds in milliseconds *)
TMR (* converts to a timer *)
ST tmval (* stores converted value in a timer *)

(* Called sub-program named 'SUBPRO' : evaluates the analog value *)
(* given as a binary value on three boolean inputs: in0, in1, in2 are the three boolean input
parameters of the sub-program *)

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 509

LD in2
ANA (* result = ana (in2); *)
MUL 2 (* result := 2*ana (in2); *)
ST temporary (* temporary := result *)
LD in1
ANA
ADD temporary (* result := 2*ana (in2) + ana (in1); *)
MUL 2 (* result := 4*ana (in2) + 2*ana (in1); *)
ST temporary (* temporary := result *)
LD in0
ANA
ADD temporary (* result := 4*ana (in2) + 2*ana (in1)+ana (in0); *)
ST SUBPRO (* return current result to calling program *)
Calling function blocks: CAL operator

Operation calls a function block
Allowed modifiers C N
Operand Name of the function block instance.

The input parameters of the blocks must be assigned before the call using LD/ST
operations sequence.

Output parameters are known if used.

Example1:

(* Calling function block SR : SR1 is an instance of SR *)
LD auto_mode
AND start_cmd
ST SR1.set1
LD stop_cmd
ST SR1.reset
CAL SR1
LD SR1.Q1
ST command

(* FBD equivalent : *)

SR
SET1

RESET Q1

auto_mode
start_cmd
stop_cmd command

&

Example 2
(*We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an instance of CTU
block*)
LD command
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTU1.cu

User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 510

LDN auto_mode
ST CTU1.reset
LD 100
ST CTU1.pv
CAL CTU1
LD CTU1.Q
ST overflow
LD CTU1.cv
ST result

(* FBD equivalent: *)
CTU

CU

RESET

PV

Q

CV

command
auto_mode

100
overflow

result

r_trig
CLK Q

U

Appendix F: Dimension
8 Slots :
60.0 30.0

31.0 31.0 31.031.0 31.031.0 31.0

376.0
395.0
418.0

11
0.

0

90
.0

75.5

Front View

Top View

Back View

354.0
331.0
310.0
ser’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 511

4 Slots :
User’s Manual Of ISaGRAF Embedded Controllers, Aug.2004, Rev. 4.0 , Copyright By ICP DAS 512

11
0.

0

90
.0

Front View

30.0

Top View

Back View

60.0

75.5

31.0 31.0 31.0

188.0

207.0
230.0

	User¡¦s Manual of ISaGRAF(Embedded Controllers
	
	Legal Liability
	Trademark & Copyright Notice

	Table of Contents
	USER¡¦S MANUAL OF ISAGRAF(EMBEDDED CONTROLLERS	1
	Specifications: I-8437 / 8837
	Specifications: I-8417 / 8817
	Specifications: I-7188EG
	Specifications: I-7188XG
	Selection Guide
	Chapter 1: Software & Hardware Installation
	1.1: Installing The ISaGRAF Workbench Software Program
	1.2: Installing The ICP DAS Utilities For ISaGRAF
	1.3: Connecting Your PC To The Controller
	1.3.1: Setting The NET-ID Addresses For The I-8xx7 Controller System
	1.3.2: Downloading & Communicating Via Modbus With The I-8xx7
	1.3.3: Connecting Your PC To The I-8xx7 COM1 Port
	1.3.4: Connecting Your PC To The I-8xx7 COM2 Port
	1.3.5: Connecting One PC To Several I-8417/8817 Controllers
	1.3.6: Changing The COM1 & COM2 Baud Rate Setting
	1.3.7: Deleting An ISaGRAF Project From The I-8xx7 Controller
	1.3.8: Connecting Your PC To The I-8437/8837 Ethernet Port
	1.3.9: Multi-Clients Connection to The I-8437/8837 Ethernet Port

	1.4: Controller to Controller Data Exchange: Fbus
	1.5: Linking I-7000 and I-87K Modules For Remote I/O
	1.6: Creating A Modbus Link With The I-8xx7 Controller
	1.7: Linking To An MMI Interface Device
	1.8: Using N-Port COM

	Chapter 2: Getting Started
	2.1: A Simple Ladder Logic (LD) Program
	2.1.1: Programming LD
	2.1.2: Connecting The I/O
	2.1.3: Compiling The Example LD Project
	2.1.4: Simulating The LD Project
	2.1.5: Download & Debugging The Example LD Project

	2.2: A Simple Structured Text (ST) Program
	2.2.1: Example ST Program

	2.3: A Simple Function Block Diagram (FDB) Program
	2.3.1: Programming The Example FBD Program
	2.3.2: Simulating The FBD Program

	2.4: A Simple Instruction List (IL) Program
	2.5: A Simple Sequential Function Chart (SFC) Program
	2.5.1: Programming The Example SFC Program
	2.5.2: Editing The SFC Program
	2.5.3: Simulating The SFC Program

	Chapter 3: Establishing I/O Connections
	3.1: Linking I/O Boards To An ISaGRAF Project
	3.1.1: Linking I/O Boards
	3.1.2: Linking Input & Output Board Variables

	3.2: Linking Analog Type I/O Boards
	3.3: Linking "Push4Key" & "Show3Led"
	3.4: Directly Represented Variables
	3.5: D/I Counters Built in The I-87xxx D/I Modules
	3.6: Auto-Scan I/O
	3.7: PWM Output
	3.8: Counters Built in Parallel D/I Boards
	3.10: Stepping Output Built in Parallel D/O Boards

	Chapter 4: Linking Controllers To An HMI Program
	4.1: Declaring Variable Addresses For Network Access
	4.2:Read/Write Word, Long Word & Float through Modbus
	4.3: Using I-8xx7 As A Modbus I/O Or A Modbus TCP/IP I/O
	4.4: Linking I-8xx7, I-7188EG/XG & W-8xx7 To Touch 500
	4.4.1: Program the I-8xx7, I-7188EG/XG & W-8xx7
	4.4.2: Program the Touch 510T

	4.5: Access To Word & Integer Array Via Modbus

	Chapter 5: Modbus Protocol
	5.1: Modbus Protocol Format: RTU Serial
	5.2: Modbus Protocol Format: TCP/IP
	5.3: Algorithm For CRC-16 Check

	Chapter 6: Linking I-7000 & I-87xx Modules
	6.1: Configuring The I-7000 & I-87xx Modules
	6.2: Opening The "Bus7000" Function
	6.3: Programming an I-7000 Module
	6.4: Redundant Bus7000

	Chapter 7: Controller To Controller Data Exchange
	7.1: Basic Fbus Rules
	7.2: Configuring An I-8xx7 To Be A Fbus "Master" Or "Slave"
	7.2.1: Configuring The Fbus Master Boolean Packages

	7.3: Programming Fbus Packages
	7.4: An Fbus Data Exchange Example
	7.5: Programming The Ebus
	7.5.1: Basic Ebus Rules
	7.5.2: Configuring the Controller To Be A Ebus "Master" Or "Slave"
	7.5.3: Programming Ebus Packages

	Chapter 8: Linking The Controller To Modbus RTU & Other Devices
	8.1: Configuring The Controller For A Modbus Device
	8.2: Programming A Modbus Device

	Chapter 9: Commonly Used ISaGRAF Utilities
	9.1: Creating An ISaGRAF Project Groups
	9.2: Uploading An ISaGRAF Project
	9.3: Setting An ISaGRAF Password
	9.4: Creating An ISaGRAF Program Diary
	9.5: Backing Up & Restoring An ISaGRAF Project
	9.6: Copying & Renaming An ISaGRAF Project
	9.7: Setting Comment Text For An ISaGRAF Project
	9.8: Setting The Slave ID For An ISaGRAF Controller
	9.9: Optimizing The ISaGRAF Code Compiler
	9.10: Using The ISaGRAF Conversion Table
	9.11: Export / Import Variable Declarations Via Microsoft Excel
	9.12: Spy list

	Chapter 10: The Retained Variable And Data Backup
	10.1: The Retained Variable
	10.2: Data Backup To The EEPROM
	10.3: Battery Backup SRAM
	10.3.1: Access to the SRAM
	10.3.2: Upload data stored in the SRAM
	10.3.3: Download data to the SRAM
	10.3.4: Operation Functions for the battery backup SRAM

	10.4: Using I-8073 - MultiMediaCard to store data
	10.5: Reading & Writing File

	Chapter 11: ISaGRAF Programming Examples
	11.1: Installing The ISaGRAF Programming Examples
	11.2: ISaGRAF Demo Example Files
	11.3: Description Of Some Demo Examples
	11.3.0 Demo_01A & Demo_03: Do something at specific time
	11.3.1 Demo_02 : Start, Stop And Reset Timer
	11.3.2 Demo_17 : R/W Integer Value From/To The EEPROM
	11.3.3 Demo_29: Store 1200 Short Int Every 75 sec & Send To PC Via Com3
	11.3.4 Demo_33 : R/W User Defined protocol Via Com3:RS232/RS485

	Chapter 12: Sending Emails
	12.1: Introduction
	12.2: Programming The ¡§Email¡¨

	Chapter 13: Remotely Download Via Modem_Link
	13.1: Introduction
	13.2: Download Program Via Modem_Link

	Chapter 14: Spotlight : Simple HMI
	
	14.1 A Spotlight Example:

	Chapter 15: Creating User-Defined Functions
	15.1: Creating functions inside one project
	15.2: Creating functions in the library

	Chapter 16: Linking MMICON
	16.1: Hardware Installation
	16.2: Create Background Picture Of the MMICON
	16.3: Writing Control program

	Chapter 17: SMS: Short Message Service
	17.1: Hardware Installation
	17.2: A SMS demo example

	Chapter 18 : Motion
	18.1: Install motion driver
	18.2: Introduction
	18.2.1: System Block Diagram
	18.2.2: DDA Technology

	18.3: Hardware
	18.3.1: I-8000 hardware address
	18.3.2: LED Indicator
	18.3.3: Hardware Configuration
	18.3.4: Pin assignment of connector CN2

	18.4: Software
	I/O connection:
	Setting commands:
	M_regist 		Register one I-8091
	M_r_sys		Reset all setting
	M_s_var		Set motion system parameters
	M_s_dir		Define output direction of axes
	M_s_mode	Set output mode
	M_s_serv		Set servo ON/OFF
	M_s_nc		Set N.O. / N.C.
	Stop commands:
	M_stpx		Stop X axis
	M_stpy		Stop Y axis
	M_stpall		Stop X & Y axes
	Simple motion commands:
	M_lsporg		Low speed move to ORG
	M_hsporg		High speed move to ORG
	M_lsppmv		Low speed pulse move
	M_hsppmv		High speed pulse move
	M_nsppmv		Normal speed pulse move
	M_lspmv		Low speed move
	M_hspmv		High speed move
	M_cspmv		Change speed move
	M_slwdn		Slow down to low speed
	M_slwstp		Slow down to stop
	Interpolation commands:
	M_intp		Move a short distance on X-Y plane
	M_intln		Move a long distance on X-Y plane
	M_intln2		Move a long distance on X-Y plane
	M_intcl2		Move a circle on X-Y plane
	M_intar2		Move a arc on X-Y plane
	M_intstp		Test X-Y plane moving command
	I-8090 encorder commands:
	M_r_enco		Reset I-8090¡¦s encorder value to 0

	Chapter 19: Ethernet Communication and Security
	Chapter 20: C Interface
	Chapter 21: Web Server For The Wincon-8xx7
	Chapter 22: VB.net V.S. The Wincon-8xx7
	Appendix A: ISaGRAF Functions & Function Blocks For The I-8xx7, I-7188EG/XG & W-8xx7 Controller
	Appendix A.1: Standard ISaGRAF Function Blocks
	Appendix A.2: Adding New Function Blocks To ISaGRAF
	Appendix A.3: I-8xx7 & I-7188EG/XG¡¦s 7-Segment LED Reference Table
	Appendix A.4: Function Blocks For The Controller
	ARRAY_R	
	ARRAY_W
	ARY_F_R
	ARY_F_W
	ARY_N_R
	ARY_N_W
	ARY_W_R
	ARY_W_W
	BCD_V
	BIN2ENG
	BIT_WD
	COMARY_R
	COMARY_W
	COMAY_NW
	COMAY_WW
	COMCLEAR
	COMCLOSE
	COMOPEN
	COMOPEN2
	COMREAD
	COMREADY
	COMSTR_W
	COMWRITE
	CRC_16
	DI_CNT
	EBUS_B_R
	EBUS_B_W
	EBUS_N_R
	EBUS_N_W
	EBUS_STS
	EEP_B_R
	EEP_B_W
	EEP_BY_R
	EEP_BY_W
	EEP_EN
	EEP_N_R
	EEP_N_W
	EEP_PR
	EEP_WD_R
	EEP_WD_W
	EMAIL
	FBUS_B_R
	FBUS_B_W
	FBUS_N_R
	FBUS_N_W
	FBUS_STS
	F_CREAT
	F_READ_B
	F_READ_F
	F_READ_W
	F_SEEK
	F_WRIT_B
	F_WRIT_F
	F_WRIT_W
	GET_SN
	INP10LED
	INP16LED
	INT_REAL
	I_RESET
	I7000_EN
	LONG_WD
	MBUS_B_R
	MBUS_BR1
	MBUS_B_W
	MBUS_N_R
	MBUS_NR1
	MBUS_N_W
	MBUS_ R
	MBUS_ R1
	MBUS_WB
	MI_BOO
	MI_INP_N
	MI_INP_S
	MI_INT
	MI_REAL
	MI_STR
	REAL_INT
	REAL_STR
	PID_AL
	PWM_DIS
	PWM_EN
	PWM_EN2
	PWM_ON
	PWM_OFF
	PWM_STS
	S_B_R
	S_B_W
	S_BY_R
	S_BY_W
	S_DL_DIS
	S_DL_EN
	S_DL_RST
	S_DL_STS
	SET_LED
	S_FL_AVL
	S_FL_INI
	S_FL_RST
	S_FL_STS
	SMS_GET
	SMS_GETS
	SMS_SEND
	SMS_STS
	SMS_TEST
	S_M_R
	S_M_W
	S_MV
	S_N_R
	S_N_W
	S_R_R
	S_R_W
	S_WD_R
	S_WD_W
	STR_REAL
	SYSDAT_R
	SYSDAT_W
	SYSTIM_R
	SYSTIM_W
	TIME_STR
	TWIN_LED
	VAL_HEX
	VAL10LED
	VAL16LED
	V_BCD
	WD_BIT
	WD_LONG

	Appendix B: Setting The IP, Mask & Gateway Address of The I-8437/8837 & I-7188EG Controllers
	Appendix C: Update The I-8417 / 8817 / 8437 / 8837 Controller to New Hardware Driver
	Appendix C.1: Setting I-8xx7 & I-7188EG¡¦s COM1 As None-Modbus-Slave port

	Appendix D: Table of The Analog IO Value
	I-87013, I-7013, I-7033

	Appendix E: LANGUAGE REFERENCE
	
	E.1.1 Programs
	E.1.2 Cyclic and sequential operations
	E.1.3 Child SFC and FC programs
	E.1.4 Functions and sub-programs
	E.1.5 Function blocks
	E.1.6 Description language
	E.1.7 Execution rules

	E.2 Common objects
	E.2.1 Basic types
	E.2.2 Constant expressions
	E.2.3 Variables
	E.2.4 Comments
	E.2.5 Defined words

	E.3 SFC language
	E.3.1 SFC chart main format
	E.3.2 SFC basic components
	E.3.3 Divergences and convergences
	E.3.4 Macro steps
	E.3.5 Actions within the steps
	E.3.6 Conditions attached to transitions
	E.3.7 SFC dynamic rules
	E.3.8 SFC program hierarchy

	E.4 Flow Chart language
	E.4.1 FC components
	E.4.2 FC complex structures
	E.4.3 FC dynamic behaviour
	E.4.4 FC checking

	E.5 FBD language
	E.5.1 FBD diagram main format
	E.5.2 RETURN statement
	E.5.3 Jumps and labels
	E.5.4 Boolean negation
	E.5.5 Calling function or function blocks from the FBD

	E.6 LD language
	E.6.1 Power rails and connection lines
	E.6.2 Multiple connection
	E.6.3 Basic LD contacts and coils
	E.6.4 RETURN statement
	E.6.5 Jumps and labels
	E.6.6 Blocks in LD

	E.7 ST language
	E.7.1 ST main syntax
	E.7.1 Expression and parentheses
	E.7.3 Function or function block calls
	E.7.4 ST specific boolean operators
	E.7.5 ST basic statements
	E.7.6 ST extensions

	E.8 IL language
	E.8.1 IL main syntax
	E.8.2 IL operators

	Appendix F: Dimension

