BLE-USB # USB to Bluetooth Low Energy Converter # User Manual v1.0 www.icpdas.com # Warranty All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year from the date of delivery to the original purchaser. # Warning ICP DAS assumes no liability for damages resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, or for any infringements of patents or other rights of third parties resulting from its use. # Copyright Copyright 2016 by ICP DAS. All rights are reserved. ### **Trademark** The names used for identification only may be registered trademarks of their respective companies. # **Technical Support** If you have any problems, feel free to contact us via e-mail at service@icpdas.com #### **Document Revision** | Version | Author | Date | Note | |---------|--------|-----------|-----------------| | 1.0 | Jack | 2016/9/20 | Release version | # **Content** | 1. | INTI | RODUCTION | 5 | |----|--------|---------------------------------|----| | | 1.1 | FEATURES | 6 | | | 1.2 | APPLICATIONS | 6 | | | 1.3 | Transmission Mode | 6 | | | 1.3.1 | Broadcast Mode | 7 | | | 1.3.2 | Connection Mode | 7 | | | 1.4 | OPERATION MODE | 8 | | | 1.5 | BLUETOOTH LE ROLE | 8 | | | 1.5.1 | Master and Slave | 9 | | | 1.5.2 | Broadcaster and Observer | 9 | | | 1.6 | MASTER IDENTIFICATION MECHANISM | 10 | | 2. | HAR | DWARE | 11 | | | 2.1 | SPECIFICATIONS | 11 | | | 2.2 | BLE-USB FRONT VIEW | 12 | | | 2.2.1 | LED Indicator | 12 | | | 2.2.2 | USB type-A plug | 14 | | | 2.3 | DIMENSIONS | 14 | | 3. | SOF" | TWARE | 15 | | | 3.1 | THE AT COMMAND | 15 | | | 3.1.1 | The AT Command syntax | 15 | | | 3.1.2 | List of AT Command | 16 | | | 3.1.3 | +++ | 17 | | | 3.1.4 | AT | 18 | | | 3.1.5 | ATE | 18 | | | 3.1.6 | | | | | 3.1.7 | AT+BR | 20 | | | 3.1.8 | AT+CL | 22 | | | 3.1.9 | AT+CN | 23 | | | 3.1.1 | 0 AT+DI | 24 | | | 3.1.1 | 1 AT+FC | 25 | | | 3.1.1. | 2 AT+LA | 26 | | | 3.1.1. | 3 AT+PN | 27 | | | 3.1.1 | 4 AT+SFR | 28 | | | 3.1.1. | 5 AT+SDN | 29 | | | 3.1.1 | 6 AT+GID | 30 | | | | | | | | 3.1.17 | AT+TPL | 32 | |----|--------|---|----| | | 3.1.18 | AT+BCIV | 33 | | | 3.1.19 | AT+COML | 34 | | | 3.1.20 | AT+ROLE | 36 | | | 3.1.21 | AT+EKEY | 38 | | | 3.1.22 | AT+SKEY | 39 | | | 3.1.23 | AT+SMODE | 41 | | | 3.1.24 | AT+BCROLE | 42 | | | 3.1.25 | Error Code Table | 44 | | | 3.2 | THE BROADCAST MODE COMMAND | 44 | | | 3.2.1 | +ADV | 45 | | | 3.2.2 | +ADS | 46 | | | 3.2.3 | +ADP | 47 | | | 3.2.4 | +ADR | 47 | | 4. | CONF | FIGURATION UTILITY | 49 | | | 4.1 | MAIN WINDOW OF TBLE-720/BLE-USB UTILITY | 49 | | | 4.2 | SET CONFIGURATION ON UTILITY | 49 | | | 4.2.1 | Basic Parameter Setting Page | 50 | | | 4.2.2 | Recovery Factory Setting Page | 54 | | | 4.3 | TEST MODULE ON UTILITY | 54 | | | 4.3.1 | Connection Mode | 54 | | | 4.3.2 | Broadcast Mode | 58 | | | 4.4 I | FIRMWARE UPGRADE ON UTILITY | 60 | | 5 | ТЕСН | INICAL SUPPORT | 65 | # 1. Introduction The BLE-USB module is small-sized wireless Bluetooth low energy (LE) converter based on the Bluetooth 4.0 standard that allow USB interface to be converted to Bluetooth LE piconet network. The BLE-USB has two transmission modes – advertisement and connection mode. Users not only can send advertising packet in the advertisement mode but also can send connection packet in the connection mode. It supports different roles in each transmission mode. One is broadcaster and observer in advertisement mode and the others is master and slave in connection mode. User can use AT command to setup the BLE-USB. The AT command not only can set role of Bluetooth LE, but also it can set some connection parameters (e.g. RF power level, broadcast parameters and slave amount). The BLE-USB also provide slave security mechanism. The mechanism can obstruct illegal master, and the slave will ignore connection request from illegal master. In addition, ICPDAS provides software utility to easily configure and test the BLE-USB modules via USB. Figure 1-1. The application architecture of BLE-USB #### 1.1 Features #### [BLE-USB] - Frequency: ISM 2.4 GHz - Standard: Bluetooth 4.0 - Fully Compliant with the USB 1.1/2.0 (High Speed) - Baud Rate :9600~115200 bps - Operating Temperatures: -25 °C ~ +75 °C - Supports multiple connections Max slave is 3 - Supports two types of communication- advertisements and connection - Provides AT commands to setup the module - Provides status / RF link indication LEDs - GUI Configuration Software (Windows Version) - No External Power Supply and Antenna required # [BLE Utility] ICP DAS provides the BLE-USB configuration utility for Windows OS. - Parameters configuration - Firmware upgrade - Easy test to transmit/receive - Setting files management # 1.2 Applications - Building Automation - Factory Automation - Machine Automation - Home Maintenance #### 1.3 Transmission Mode The transmission mode of BLE-USB can divide into two categories: Broadcast and connection. Each mode had different roles. The Broadcaster/Observer (scanner) used in the broadcast mode. The Master/Slave was used in the connection mode. #### 1.3.1 Broadcast Mode The broadcast mode is the new features in the Bluetooth LE. The Bluetooth LE Broadcaster device broadcasts packets to every device around it. The Bluetooth LE Observer device can receive the information without connection. The BLE-USB supports another feature in broadcaster mode. The Broadcaster and Observer (refer to 1.5.2) had an identification ID, and it call "**Group ID**". The "**Group ID**" (refer to 3.1.16) parameter specifies the logical group identity for BLE-USB devices, and each BLE-USB module must be set to the same value if it is in the same group as other modules. The schematic diagram of broadcast mode was shown in Figure 1-2. It had two broadcasters and ten observers. The Observer 1~5 can receive packet from broadcaster A. The Observer 6~10 can receive packet from broadcaster B. The Observer 1~5 can receive the information without connection. The Observer 1 also can receive packet from broadcaster B, but the Observer 1 only can receive packet from broadcaster A because the Group ID is different. Figure 1-2. The schematic diagram of BLE-USB #### 1.3.2 Connection Mode The connection mode need make a connection before packet exchange. The slave will broadcast after power on. If the master receive broadcast packet from the Slave and it will send connection request to the Slave. The Slave can connect to one Master unless it disconnect with current Master. The Master can connect with three Slaves. If the number of slave connections was reached to 3. The Master will not send connection request unless the connections was less than 3. The Slave and Master also had "Group ID" (refer to 3.1.16). The Slave and Master must be set to same "Group ID", and the Master will send connection request to the Slave. The Slave had a master identification mechanism. The Slave receive connection request from Master. If the illegal Master was connected to the Slave, and then the Slave will be disconnect from Master. The master identification mechanism can disable by AT command. The schematic diagram of broadcast mode was shown in Figure 1-3. It had two Masters and six Slaves. The Master A will connect to the Slave 1~3, and the Master B will connect to the Slave 4~6. The Slave 1 is in the commutation range of Master B, but the Master will not send the connection request to the Slave 1 because the Group ID is different. Figure 1-3. The schematic diagram of BLE-USB # 1.4 Operation Mode The module will in the initialization mode after power on. If the initialization was success, and the module will went to the transmission mode. The module can send data or it can receive the data in the transmission mode. User sends the "+++<CR>" to the module. It will go to the AT command mode. The module will be in the AT command mode until 50 second without any commands or send the "ATE<CR>". The AT command mode can refer to 3.13.1. Figure 1-4. The block diagram of operation mode #### 1.5 Bluetooth LE Role The Bluetooth Low Energy (LE) had four roles. The roles are Master (Central), Slave (Peripheral), Broadcaster and Observer. The Master and slave had used in the connection mode. The Broadcaster and Observer has used in the broadcast mode. #### 1.5.1 Master and Slave First, there is the concept of Master (Central)/ Slave (Peripheral), which has to do with establishing a link. This is also known as the GAP role. A Peripheral can advertise, to let other devices know that it's there, but it's only a Central that can send a connection request to establish a connection. When a link has been established, the Central is also called a Master, while the Peripheral could be called a Slave. The Slave only can connect to a Master, but the Master can connect to three Slaves in our module. The Slave will not be sending broadcast packet after link has been established. Figure 1-5. The workflow of Bluetooth LE connection The Slave has two broadcast patterns. One is the high discoverable mode. The other is low discoverable mode. The Slave will be broadcasting for 30 second in high discoverable mode, and the broadcast interval is 20ms for 3 channels. The Slave will be broadcasting for 60 second in low discoverable mode, and the broadcast interval is 640ms for 3 channels. The Slave will in the high discoverable mode after power on. If the Slave didn't received connection request from the Master in high discoverable mode and it will switch to low discoverable mode. #### 1.5.2 Broadcaster and Observer The Broadcaster does so by constantly advertising, and the Broadcaster usually has useful data in the advertising packet. The advertising packet is meant for everyone to see. The Broadcaster is
broadcasting to others, so it never accepts connections. The Observer is the opposite of the Broadcaster: it passively listens to BLE devices in its area and processes the data from the advertising packets it receives. Figure 1-6. The workflow of Bluetooth LE broadcast ### 1.6 Master Identification Mechanism The Slave had a master identification mechanism. The Master will send identification packet to the Slave. The Slave will check the identification packet that the identification packet was incorrect. The Slave will disconnect with the Master. The feature can enable by AT command (refer to 3.1.21). Figure 1-7. The architecture of master identification mechanism # 2. Hardware 2.1 Specifications | Specifications | | | | | |-------------------------|--|--|--|--| | Hardware | | | | | | LED indication | Status / RF link | | | | | RF Specification | | | | | | Frequency Band | 2.4 GHz ISM(2402~2480 MHz) | | | | | Tx power | -20~4 dBm | | | | | Rx sensitivity | -94 dBm | | | | | Antenna type | 1.0 dBi chip antenna | | | | | Transmit Range | 30 m | | | | | RF data rate | 85 kbps | | | | | Max. Slaves Supported | 3 | | | | | Bluetooth LE Stack | | | | | | Stack Version | Bluetooth 4.0 | | | | | Connection Role | Master/Slave – connection mode | | | | | Connection Role | Observer /Broadcaster – broadcast mode | | | | | Communication Interface | | | | | | Interface | USB 2.0 | | | | | Connector | Type-A Plug | | | | | Compatibility | USB 1.1 and 2.0 standard | | | | | | Windows 98/2000/XP/Vista/7/10 | | | | | USB Driver Support | WinPAC (WinCE6.0/7.0) | | | | | | LinPAC (Linux kernel 3.0.0-19) | | | | | Baud Rate | 9600~115200 bps | | | | | Data Format | N,8,1 | | | | | Power | | | | | | Operating Voltage | USB Socket Powered | | | | | Power Consumption | 0.1 W (Max.) | | | | | Mechanical | | | | | | Casing | Plastic | | | | | Dimensions (L x W x H) | 58.4 mm x 19.8 mm x 9 mm | | | | | Environment | | | | | | Operating Temperature | -25 ~ +75°C | | | | | Storage Temperature | -25 ~ +75°C | | | | | Relative Humidity | 5 ~ 95% RH, Non-condensing | | | | | | | | | | ### 2.2 BLE-USB Front View Figure 2-1. Front View of BLE-USB #### 2.2.1 LED Indicator | LED Indicator | LED Color | Description | |---------------|-----------|---------------------------------------| | RF Link | Green | The connection status of Bluetooth LE | | Status | Red | The module status of BLE-USB | The LED had different pattern in the connection and broadcast mode. # Connection mode The RF link LED will blink for 3 second after BLE-USB power on, and the status LED also will turn on for 3 second. The connection had two roles – master and slave. Each role had different LED pattern. The LED pattern was shown in following table: | Master | | | | | | | | |---------------|----------------|--|--|--|--|--|--| | LED Indicator | Status | Description | | | | | | | | Steady Lit | Connect to all salves | | | | | | | RF Link | Blink (1 s) | Connect to slave, but not connect to all slaves | | | | | | | | Blink (200 ms) | Not connect to slave | | | | | | | Status | Steady Lit | Module initializes success(only turn on for 3 second after power on) | | | | | | | | Blink (50 ms) | Module initializes fail(keep turn on) | | | | | | | | Blink (200 ms) | Temporary Buffer was full | | | | | | | | Blink (50 ms) | RF receive data (flash once) | | | | | | | Slave | | | | | |---------------|----------------|--|--|--| | LED Indicator | Status | Description | | | | | Steady Lit | RF signal is good (RSSI is greater than - 60 dBm) | | | | RF Link | Blink (1 s) | RF signal is normal (RSSI is between -61 and -80 dBm) | | | | | Blink (2 s) | RF signal is bad (RSSI is between t-81 and -100 dBm) | | | | | Blink (200 ms) | Not connect to master | | | | | Steady Lit | Module initializes success(only turn on for 3 second after power on) | | | | Status | Blink (50 ms) | Module initializes fail(keep turn on) | | | | | Blink (200 ms) | Temporary Buffer was full | | | | | Blink (50 ms) | RF receive data (flash once) | | | # Broadcast mode The RF link LED and status LED will turn on for 3 second after BLE-USB power on. The connection had two roles – broadcaster and observer (scanner). Each role had different LED pattern. The LED pattern was show in following table: | Broadcaster | | | | | |---------------|---------------|--|--|--| | LED Indicator | Status | Description | | | | RF Link | Steady Lit | The RF Link LED will keep on in the broadcast mode | | | | Status | Steady Lit | Module initializes success(only turn on for 3 second after power on) | | | | | Blink (50 ms) | Module initializes fail(keep turn on) | | | | | Blink (1 s) | Broadcast is start | | | | | Blink (2 s) | Broadcast is stop | | | | Observer (scanner) | | | | | |--------------------|---------------|--|--|--| | LED Indicator | Status | Description | | | | RF Link | Steady Lit | The RF Link LED will keep on in the broadcast mode | | | | Status | Radiate (ON) | Module initializes success(only turn on for 3 second after power on) | | | | | Blink (50 ms) | Module initializes fail(keep turn on) | | | | | Blink (50 ms) | RF receive data (flash once) | | | # 2.2.2 USB type-A plug The port is used to configure BLE-USB, communicate with other BLE modules and be powered via the USB socket. # 2.3 Dimensions Figure 2-2. Dimensions of BLE-USB # 3. Software # 3.1 The AT Command #### 3.1.1 The AT Command syntax The AT commands help users to control or get the information of BLE-USB. The prefix "AT+" must be included at the beginning of each command line (except +++, AT and ATE), and the character <CR> is used to finish a command line. When the application would like to send a series of AT commands, leave a pause between the preceding and the following command until information responses (e.g. "OK"). In the present document, AT commands can divide into four types: Write Command, Read Command, Test Command and Execution Command. If the AT command isn't exist or syntax error, and the BLE-USB would be reply error code. All of AT commands will valid when the module was entering to the AT command mode (except ++++). The correct flow of AT command was shown in Figure 3-1. Figure 3-1. The flow of AT command #### 1. Write Command The write command can write configure to the BLE-USB. The format of write command is "AT+XXX=YYY<CR>".The "AT+" is a beginning in the command, and the "XXX" is command name, and the "YYY" is a parameter, and the<CR> is end of the command. The syntax or parameter was incorrect and the BLE-USB would be reply error code. The user didn't reset configure again because all of configure will be save in the local memory after receive write command. #### 2. Read Command The read command can read configure from the BLE USB. The format of read command is "AT+XXX?<CR>".The "AT+" is a beginning in the command, and the "XXX" is command name, and the "?" is read command, and the < CR > is end of the command. #### 3. Test Command The test command can examine the syntax of command and give the information about the command parameter. The format of test command is "AT+XXX=?<CR>".The "AT+" is a beginning in the command, and the "XXX" is command name, and the "=?" is test command, and the<CR> is end of the command. All of AT commands supports the test command. If the syntax of command is correct. The BLE-USB would be reply "OK<CR><LF>". #### 4. Execution Command The execution command can execute some functions (e.g. reset the module). The format of test command is "AT+XXX<CR>".The "AT+" is a beginning in the command, and the "XXX" is command name, and the CR> is end of the command. #### 3.1.2 List of AT Command The BLE-USB supports AT commands. The command list was shown in the Table 3-1. Table 3-1. List of AT command | Command Name | Write | Read | Test | Execution | Description | Section | |---|-------|----------|----------|-----------|--------------------------|---------| | +++ <cr></cr> | × | × | × | ✓ | Enter to AT command mode | 3.1.3 | | AT <cr></cr> | × | × | × | ✓ | Test command | 3.1.4 | | ATE <cr></cr> | × | × | × | ✓ | Leave AT command mode | 3.1.5 | | AT+BC <cr></cr> | ~ | ✓ | / | × | Broadcast Channel | 3.1.6 | | AT+BR <cr></cr> | ~ | ~ | / | × | Baud rate | 3.1.7 | | AT+CL <cr></cr> | × | ✓ | / | × | Connection list | 3.1.8 | | AT+CN <cr></cr> | × | ✓ | / | × | Connection amount | 3.1.9 | | AT+DI <cr></cr> | × | ~ | / | × | Device information | 3.1.10 | | *AT+FC <cr< td=""><td>×</td><td>×</td><td>V</td><td>✓</td><td>Factory setting</td><td>3.1.11</td></cr<> | × | × | V | ✓ | Factory setting | 3.1.11 | | AT+LA <cr></cr> | × | ~ | V | × | Local address | 3.1.12 | | *AT+PN <cr></cr> | ~ | / | V | × | Peer amount | 3.1.13 | | *AT+SFR <cr></cr> | × | X | V | V | Software reset | 3.1.14 | | Command Name | Write | Read | Test | Execution | Description | Section | |----------------------|----------|-------------|----------|-----------|--|---------| | AT+SDN <cr></cr> | ~ | ✓ | ✓ | × | Slave device number | 3.1.15 | | AT+GID <cr></cr> | ~ | > | ✓ | × | Group ID | 3.1.16 | | AT+TPL <cr></cr> | ~ | ✓ | ✓ | × | RF power level | 3.1.17 | | AT+BCIV <cr></cr> | ~ | > | ✓ | × | Broadcast interval | 3.1.18 | | AT+COML <cr></cr> | × | × | ✓ | ✓ | Command list | 3.1.19 | | *AT+ROLE <cr></cr> | ✓ | ✓ | ✓ | × | Connection role | 3.1.20 | | AT+EKEY <cr></cr> |
• | > | • | × | Enable master identification mechanism | 3.1.21 | | *AT+SKEY <cr></cr> | ~ | > | ✓ | × | Set master identification key | 3.1.22 | | *AT+SMODE <cr></cr> | ~ | > | / | × | Transmission mode | 3.1.23 | | *AT+BCROLE <cr></cr> | ✓ | > | ~ | × | Broadcast role | 3.1.24 | *: The write or execution command will reset the module. ### 3.1.3 +++ # (1) Description This command is used to set module into the AT command mode. # (2) Syntax | Execution command | Response | |-------------------|-------------------------------------| | +++ <cr></cr> | Enter to AT mode <cr><lf></lf></cr> | # (3) Example +++<CR> Enter to AT mode<CR><LF> ### 3.1.4 AT # (1) Description This command is used for testing module when the module had entered to the AT command mode. # (2) Syntax | Execution command | Response | |-------------------|-----------------------| | AT <cr></cr> | OK <cr><lf></lf></cr> | # (3) Example AT<CR> OK<CR><LF> AT AT<CR> Error: 05<CR><LF> (refer to 3.1.25) # 3.1.5 ATE # (1) Description This command is used to leave the AT command mode. # (2) Syntax | Execution command | Response | |-------------------|-----------------------| | ATE <cr></cr> | OK <cr><lf></lf></cr> | # (3) Example ATE<CR> OK<CR><LF> #### 3.1.6 AT+BC ### (1) Description The Bluetooth LE used 3 channels (CH37~39) for frequency hopping in broadcast mode. This command allow user to change the broadcast channel when the module was in the broadcast mode. User can choose one channel for broadcasting, or choose three channels for broadcasting. The command only change the broadcast command in the broadcast mode, and the broadcast will not be change in the connection mode. # (2) Syntax | Write Command | Response | |-------------------------------------|---| | AT+BC= <channel><cr></cr></channel> | OK <cr><lf>
Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></lf></cr> | | Read Command | Response | | AT+BC? <cr></cr> | +BC: <channel><cr><lf> OK<cr><lf></lf></cr></lf></cr></channel> | | Test Command | Response | | AT+BC=? <cr></cr> | +BC: 0~3 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | ### (3) Parameter | <channel></channel> | 0: CH 37 (2402 MHz) 1: CH 38 (2426 MHz) 2: CH 39 (2480 MHz) 3: CH 37~39 Default: 3 | |---------------------|--| |---------------------|--| ### (4) Example | AT+BC=1 <cr></cr> | | |-----------------------|--| | OK <cr><lf></lf></cr> | | | AT+BC? <cr></cr> | | +BC: 1 <CR><LF> OK<CR><LF> AT+BC=7<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+BC=?<CR> +BC: 0~3<CR><LF> OK<CR><LF> AT+BC<CR> Error: 04<CR><LF> (refer to 3.1.25) ### 3.1.7 AT+BR # (1) Description This command is used to change the baud rate of module. # (2) Syntax | Write Command | Response | |---------------------------------------|---| | AT+BR= <baud rate=""><cr></cr></baud> | OK <cr><lf> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></lf></cr> | | Read Command | Response | | AT+BR? <cr></cr> | +BR: <baud rate=""><cr><lf> OK<cr><lf></lf></cr></lf></cr></baud> | | Test Command | Response | | AT+BR=? <cr></cr> | +BR: 0~5 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter # (4) Example AT+BR=1<CR> OK<CR><LF> AT+BR?<CR> +BR: 1<CR><LF> OK<CR><LF> AT+BR=7<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+BR=?<CR> $+BR: 0\sim3<CR><LF>$ OK < CR > < LF > AT+BR<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.8 AT+CL # (1) Description This command is used to query which device was connected in connection mode. # (2) Syntax | Read Command | Response | |-------------------|---| | AT+CL? <cr></cr> | +CL: <mac address="">,<rssi><cr><lf>OK<cr><lf></lf></cr></lf></cr></rssi></mac> | | Test Command | Response | | AT+CL=? <cr></cr> | +CL: ADDRESS,RSSI <cr><lf>OK<cr><lf></lf></cr></lf></cr> | ### (3) Parameter | <mac address=""></mac> | 6 Byte MAC address Range: 000DE06D0000 ~ 000DE06DFFFF 0: not connect to peer device | |------------------------|---| | <rssi></rssi> | RSSI(Received Signal Strength Indicator) of peer device | # (4) Example # AT+CL?<CR> +CL: 0<CR><LF> (not connect to peer device) OK<CR><LF> ### AT+CL?<CR> +CL: 000DE06D001F,-61<CR><LF> OK<CR><LF> # AT+CL?<CR> +CL: 000DE06D001F,-61<CR><LF> +CL: 000DE06D0003,-55<CR><LF> OK < CR > < LF > AT+CL=?<CR> +CL: ADDRESS,RSSI<CR><LF> OK<CR><LF> AT+CL=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+CL<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.9 AT+CN # (1) Description This command can show how many peer devices had connected into itself. ### (2) Syntax | Read Command | Response | |-------------------|---| | AT+CN? <cr></cr> | +CN: <amount><cr><lf> OK<cr><lf></lf></cr></lf></cr></amount> | | Test Command | Response | | AT+CN=? <cr></cr> | +CN: 1~3 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter | (amaumt) | Peer device amount | |-------------------|--------------------| | <amount></amount> | Range: 1~3 | ### (4) Example # AT+CN?<CR> +CN: 0<CR><LF> (not connect to any peer) OK<CR><LF> AT+CN?<CR> +CN: 1<CR><LF> OK<CR><LF> AT+CN=?<CR> +CN: 0 <CR><LF> OK<CR><LF> AT+CN=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+CN<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.10 AT+DI # (1) Description This command can show the device information. # (2) Syntax | Read Command | Response | |-------------------|---| | AT+DI? <cr></cr> | Manufacturer: <manufacturer></manufacturer> | | | Firmware Version: <version></version> | | | BLE Version: <stack version=""></stack> | | | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+DI=? <cr></cr> | OK <cr><lf></lf></cr> | # (3) Parameter | <manufacturer></manufacturer> | The identification of manufacturer. | |-------------------------------|---| | <version></version> | The identification of firmware version. | | <stack version=""></stack> | The identification of Bluetooth LE stack version. | # (4) Example AT+DI=?<CR> OK<CR><LF> AT+DI?<CR> Manufacturer: ICDPAS<CR><LF> Firmware Version: 1.0<CR><LF> BLE Version: 4.0<CR><LF> OK<CR><LF> AT+DI=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+DI<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.11 AT+FC # (1) Description This command allows users for recovering module to factory setting and resetting the module after 500 ms. All of the parameters will be reset to default value. ### (2) Syntax | Execution Command | Response | |-------------------|-----------------------| | AT+FC <cr></cr> | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+FC=? <cr></cr> | OK <cr><lf></lf></cr> | ### (3) Example AT+FC=?<CR> OK<CR><LF> AT+FC?<CR> OK<CR><LF> AT+FC=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+FC?<CR> Error: 02<CR><LF> (refer to 3.1.25) #### 3.1.12 AT+LA ### (1) Description This command is used to show the address of local device. # (2) Syntax | Read Command | Response | |-------------------|---| | AT+LA? <cr></cr> | +LA: <mac address=""><cr><lf></lf></cr></mac> | | | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+LA=? <cr></cr> | +LA: ADDRESS <cr><lf></lf></cr> | | | OK <cr><lf></lf></cr> | ### (3) Parameter | | 6 Byte MAC address | |------------------------|------------------------------------| | <mac address=""></mac> | Range: 000DE06D0000 ~ 000DE06DFFFF | # (4) Example AT+LA?<CR> +LA: 000DE06D0013<CR><LF> OK<CR><LF> AT+LA=?<CR> +LA: ADDRESS<CR><LF> OK<CR><LF> AT+LA=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+LA<CR> Error: 04<CR><LF> (refer to 3.1.25) # 3.1.13 AT+PN # (1) Description This command can set the amount of maximum slave. If the master connected to all the slaves, and the RF data rate will be reduce. The module will be rebooting that the module received write command in the connection mode. # (2) Syntax | Write Command | Response | |-----------------------------------|---| | AT+PN= <amount><cr></cr></amount> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+PN? <cr></cr> | +PN: <amount><cr><lf> OK<cr><lf></lf></cr></lf></cr></amount> | | Test Command | Response | | AT+PN=? <cr></cr> | +PN: 1~3 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter | | Peer device amount | |-------------------|--------------------| | <amount></amount> | Range: 1~3 | | | Default: 3 | # (4) Example | AT+PN=1 <cr></cr> | |-----------------------------| | OK <cr><lf></lf></cr> | | AT+PN? <cr></cr> | | +PN: 1 <cr><lf></lf></cr> | | OK <cr><lf></lf></cr> | | AT+PN=? <cr></cr> | | +PN: 1~3 <cr><lf></lf></cr> | | OK <cr><lf></lf></cr> | # AT+PN=7<CR> Error: 01<CR><LF> (refer to 3.1.25) ### AT+PN<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.14 AT+SFR # (1) Description This command can reboot the module. The module will be rebooting after 500 ms. # (2) Syntax | Execution Command | Response | |--------------------|-----------------------| | AT+SFR <cr></cr> | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+SFR=? <cr></cr> | OK <cr><lf></lf></cr> | # (3) Example AT+SFR=?<CR> OK<CR><LF> AT+SFR?<CR> OK<CR><LF> AT+SFR=1<CR> Error: 03<CR><LF> (refer to 3.1.25) AT+SFR?<CR> Error: 02<CR><LF> (refer to 3.1.25) #### 3.1.15 AT+SDN ### (1) Description This command can set the device name of slave when the slave was broadcast in the connection mode. The master (mobile device) can use the device name to identify slave. Figure 3-2. Screenshot of mobile device APP # (2) Syntax | Write Command | Response | |------------------------------------
--| | AT+SDN= <number><cr></cr></number> | OK <cr></cr> | | Read Command | Error: 01 <cr><lf> (refer to 3.1.25) Response</lf></cr> | | AT+SDN? <cr></cr> | +SDN: <number><cr><lf> OK<cr><lf></lf></cr></lf></cr></number> | | Test Command | Response | | AT+SDN=? <cr></cr> | +SDN: 0~999 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | ### (3) Parameter | | The number of device | |-------------------|----------------------| | <number></number> | Range: 0~999 | | | Default: 720 | # (4) Example AT+SDN=1<CR> OK<CR><LF> AT+SDN?<CR> +SDN: 1<CR><LF> OK<CR><LF> AT+SDN=77<CR> OK<CR><LF> AT+SDN=777<CR> OK<CR><LF> AT+SDN=?<CR> +SDN: 0~999<CR><LF> OK<CR><LF> AT+SDN=1000<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+SDN=ABCD<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+SDN<CR> Error: 04<CR><LF> (refer to 3.1.25) #### 3.1.16 AT+GID #### (1) Description This command is used to change the "Group ID" at the module. The device will receive the packet when both of the Group ID is same in the broadcast or connection mode. The Group ID isn't same and the device will discard the packet. The Group ID is "0", and it will receive all packets of the group. # (2) Syntax | Write Command | Response | |------------------------------------|--| | AT+GID= <number><cr></cr></number> | OK <cr></cr> | | | Error: 01 <cr><lf> (refer to 3.1.25)</lf></cr> | | Read Command | Response | | AT+GID? <cr></cr> | +GID: <number><cr><lf></lf></cr></number> | | | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+GID=? <cr></cr> | +GID: 0~99 <cr><lf></lf></cr> | | | OK <cr><lf></lf></cr> | # (3) Parameter | | The number of Group ID | |-------------------|------------------------| | <number></number> | Range: 0~99 | | | Default: 0 | # (4) Example AT+GID=1<CR> OK<CR><LF> $AT + GID? <\!\!CR\!\!>$ +GID: 1<CR><LF> OK<CR><LF> AT+GID=77<CR> OK<CR><LF> AT+GID=?<CR> +GID: 0~99<CR><LF> OK<CR><LF> AT+GID=100<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+GID=AB<CR> Error: 01<CR><LF> (refer to 3.1.25) # AT+GID<CR> Error: 04<CR><LF> (refer to 3.1.25) # 3.1.17 AT+TPL # (1) Description This command can change the RF power when the module was send the broadcast or connection packet. # (2) Syntax | Write Command | Response | |----------------------------------|--| | AT+TPL= <level><cr></cr></level> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+TPL? <cr></cr> | +TPL: < Level> <cr><lf> OK<cr><lf></lf></cr></lf></cr> | | Test Command | Response | | AT+TPL=? <cr></cr> | +TPL: 0~8 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter | | The RF power level | |-----------|--------------------| | < Level > | Range: 0~8 | | | 0: 0 dBm | | | 1: 1 dBm | | | 2: 2 dBm | | | 3: 3 dBm | | | 4: 4 dBm | | | 5: -5 dBm | | | 6: -10 dBm | | | 7: -15 dBm | | | 8: -20 dBm | | | Default: 4 | # (4) Example AT+TPL=1<CR> OK<CR><LF> AT+TPL?<CR> +TPL: 1<CR><LF> OK<CR><LF> AT+TPL=?<CR> +TPL: 0~8<CR><LF> OK<CR><LF> AT+TPL=10<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+TPL<CR> Error: 04<CR><LF> (refer to 3.1.25) ### 3.1.18 **AT+BCIV** # (1) Description This command can change the broadcast interval in the broadcast mode. # (2) Syntax | Write Command | Response | |---|---| | AT+BCIV= <interval><cr></cr></interval> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+BCIV? <cr></cr> | +BCIV: <interval><cr><lf> OK<cr><lf></lf></cr></lf></cr></interval> | | Test Command | Response | | AT+BCIV=? <cr></cr> | +BCIV: 20~10000 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | ### (3) Parameter < Interval > The broadcast interval Range: 20~10000 Unit: ms Default: 1000 # (4) Example ### AT+BCIV=50<CR> OK<CR><LF> ### AT+BCIV?<CR> +BCIV: 50<CR><LF> OK<CR><LF> ### AT+BCIV=?<CR> +BCIV: 20~10000<CR><LF> OK<CR><LF> #### AT+BCIV=10<CR> Error: 01<CR><LF> (refer to 3.1.25) ### AT+BCIV=60000<CR> Error: 01<CR><LF> (refer to 3.1.25) #### AT+BCIV<CR> Error: 04<CR><LF> (refer to 3.1.25) # 3.1.19 AT+COML # (1) Description This command can show that the module had supported commands. # (2) Syntax | Test Command | Response | |----------------------|------------------------------| | AT+COML=? <cr></cr> | OK <cr><lf></lf></cr> | | Execution Command | Response | | | AT <cr><lf></lf></cr> | | | ATE <cr><lf></lf></cr> | | | AT+BC <cr><lf></lf></cr> | | | AT+BR <cr><lf></lf></cr> | | | AT+CL <cr><lf></lf></cr> | | | AT+CN <cr><lf></lf></cr> | | | AT+DI <cr><lf></lf></cr> | | | AT+FC <cr><lf></lf></cr> | | | AT+LA <cr><lf></lf></cr> | | | AT+PN <cr><lf></lf></cr> | | AT+COML=? <cr></cr> | AT+GID <cr><lf></lf></cr> | | AT+CONIL=! <ck></ck> | AT+SDN <cr><lf></lf></cr> | | | AT+SFR <cr><lf></lf></cr> | | | AT+TPL <cr><lf></lf></cr> | | | AT+BCIV <cr><lf></lf></cr> | | | AT+COML <cr><lf></lf></cr> | | | AT+ROLE <cr><lf></lf></cr> | | | AT+EKEY <cr><lf></lf></cr> | | | AT+SKEY <cr><lf></lf></cr> | | | AT+SMODE <cr><lf></lf></cr> | | | AT+BCROLE <cr><lf></lf></cr> | | | OK <cr><lf></lf></cr> | # (3) Example # AT+COML=?CR> OK<CR><LF> # AT+COML?<CR> $AT <\!\! CR\!\! > <\!\! LF\!\! >$ ATE<CR><LF> AT+BC<CR><LF> AT+BR<CR><LF> AT+CL<CR><LF> AT+CN<CR><LF> AT+DI<CR><LF> AT+FC<CR><LF> AT+LA<CR><LF> AT+PN<CR><LF> AT+GID<CR><LF> AT+SDN<CR><LF> AT+SFR<CR><LF> AT+TPL<CR><LF> AT+BCIV<CR><LF> AT+COML<CR><LF> AT+ROLE<CR><LF> AT+EKEY<CR><LF> AT+SKEY<CR><LF> AT+SMODE<CR><LF> AT+BCROLE<CR><LF> OK<CR><LF> #### 3.1.20 **AT+ROLE** # (1) Description This command can change connection role (refer to 1.5.1) in the connection mode. ### (2) Syntax | Write Command | Response | |---------------------------------|--| | AT+ROLE= <role><cr></cr></role> | OK <cr></cr> | | | Error: 01 <cr><lf> (refer to 3.1.25)</lf></cr> | | Read Command | Response | | AT+ROLE? <cr></cr> | +ROLE: <role><cr><lf></lf></cr></role> | | | OK <cr><lf></lf></cr> | | Test Command | Response | | AT+ROLE=? <cr></cr> | +ROLE: 0~1 <cr><lf></lf></cr> | | | OK <cr><lf></lf></cr> | # (3) Parameter The role connection Range: 0~1 < role > 0: Slave (Peripheral) 1: Master (Central) Default: 0 # (4) Example AT+ROLE=1<CR> OK<CR><LF> AT+ROLE?<CR> +ROLE: 1<CR><LF> OK<CR><LF> AT+ROLE=?<CR> +ROLE: 0~1<CR><LF> OK < CR > < LF > AT+ROLE=10<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+ROLE<CR> Error: 04<CR><LF> (refer to 3.1.25) # **3.1.21** AT+EKEY # (1) Description This command is used to enable or disable Master identification mechanism (refer to 1.6). # (2) Syntax | Write Command | Response | |-------------------------------------|---| | AT+EKEY= <status><cr></cr></status> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+EKEY? <cr></cr> | +EKEY: <status><cr><lf> OK<cr><lf></lf></cr></lf></cr></status> | | Test Command | Response | | AT+EKEY=? <cr></cr> | +EKEY: 0~1 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter | | The enable or disable Master identification mechanism | |------------|---| | | Range: 0~1 | | < status > | 0: Disable | | | 1: Enable | | | Default: 0 | # (4) Example AT+EKEY=1<CR> OK<CR><LF> AT+EKEY?<CR> +EKEY: 1<CR><LF> OK<CR><LF> AT+EKEY=?<CR> +ROLE: 0~1<CR><LF> OK<CR><LF> AT+EKEY=10<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+EKEY<CR> Error: 04<CR><LF> (refer to 3.1.25) ### 3.1.22 AT+SKEY # (1) Description The user enables the Master identification mechanism and the Master will be sending identification packet to the Slave. This command can change the identification packet of Master identification mechanism. Figure 3-3. The identification packet # (2) Syntax | Write Command | Response | |-------------------------------|--| | AT+SKEY= <key><cr></cr></key> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+SKEY? <cr></cr> | +SKEY: <key><cr><lf> OK<cr><lf></lf></cr></lf></cr></key> | |---------------------|---| | Test Command | Response | | AT+SKEY=? <cr></cr> | +SKEY: KEY <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter | The key of Master identification mechanism Key length: 6 Byte Key value: 0x20~0xFF (ASCII) | The key of Master identification mechanism | |--|--| | | | | | Key value: 0x20~0xFF (ASCII) | | | Default: ICPDAS | # (4) Example # AT+SKEY=ABCDEF<CR> OK<CR><LF> # AT+SKEY?<CR> +SKEY: ABCDEF<CR><LF> OK<CR><LF> ### AT+SKEY=?<CR> +SKEY: 0~1<CR><LF> OK<CR><LF> # AT+SKEY=<0x01><0x21><0x02><0x23><0x24><0xFF><CR> Error: 01<CR><LF> (refer to 3.1.25) ### AT+SKEY<CR> Error: 04<CR><LF> (refer to 3.1.25) # **3.1.23** AT+SMODE # (1) Description This command can switch the transmission mode to the broadcast or connection mode. # (2) Syntax | Write Command | Response | |----------------------------------|--| | AT+SMODE= <mode><cr></cr></mode> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+SMODE? <cr></cr> | +SMODE: <mode><cr><lf> OK<cr><lf></lf></cr></lf></cr></mode> | | Test Command | Response | | AT+SMODE=? <cr></cr> | +SMODE: 0~1 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter # (4) Example # AT+SMODE=1<CR> OK<CR><LF> AT+SMODE?<CR> +SMODE: 1<CR><LF> OK<CR><LF> AT+SMODE=?<CR> +SMODE: 0~1<CR><LF> OK<CR><LF> AT+SMODE=2<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+SMODE<CR> Error: 04<CR><LF> (refer to 3.1.25) # 3.1.24 AT+BCROLE # (1) Description This command can switch the role (refer to 1.5.2) in the broadcast mode. # (2) Syntax | Write Command |
Response | |-----------------------------------|---| | AT+BCROLE= <role><cr></cr></role> | OK <cr> Error: 01<cr><lf> (refer to 3.1.25)</lf></cr></cr> | | Read Command | Response | | AT+BCROLE? <cr></cr> | +BCROLE: <role><cr><lf> OK<cr><lf></lf></cr></lf></cr></role> | | Test Command | Response | | AT+BCROLE=? <cr></cr> | +BCROLE: 0~1 <cr><lf> OK<cr><lf></lf></cr></lf></cr> | # (3) Parameter The broadcast role Range: 0~1 < Role > 0: Observer 1: Broadcaster Default: 0 # (4) Example AT+BCROLE=1<CR> OK<CR><LF> AT+BCROLE?<CR> +BCROLE: 1<CR><LF> OK<CR><LF> AT+BCROLE=?<CR> +BCROLE: 0~1<CR><LF> OK<CR><LF> AT+BCROLE=2<CR> Error: 01<CR><LF> (refer to 3.1.25) AT+BCROLE<CR> Error: 04<CR><LF> (refer to 3.1.25) ### 3.1.25 Error Code Table | Error code | Mode | Description | |------------|-------------------|---| | 01 | | The parameter of AT command is error | | 02 | | This command didn't support read mode | | 03 | | This command didn't support write mode | | 04 | AT command | This command didn't support execution mode | | 05 | mode | Unknown AT command | | 06 | | Unknown AT command mode | | 07 | | Set baud rate fail | | C1 | Connection | Not connect to peer device | | C2 | mode | Illegal master | | A1 | | Header error | | A2 | Broadcast
mode | Broadcast packet is too long | | A3 | | Broadcast packet is null | | A4 | | This features was not supported in broadcaster role | | A5 | | This features was not supported in Observer role | # 3.2 The Broadcast Mode Command The module also supports few commands in broadcast mode. User can send this command and didn't need to enter the command mode. The prefix "+AD" must be included at the beginning of each command line, and the character <CR> is used to finish a command line. Figure 3-4. Start transmission in broadcast mode ### 3.2.1 + ADV # (1) Description This command was used to set the broadcast packet in the Broadcaster. The maximum length of the broadcast packet is 21 Bytes. # (2) Syntax | Execution Command | Response | |----------------------------------|---| | +ADV: <packet><cr></cr></packet> | OK <cr><lf> Error: A1<cr><lf> (refer to 3.1.25) Error: A2<cr><lf> (refer to 3.1.25) Error: A5<cr><lf> (refer to 3.1.25)</lf></cr></lf></cr></lf></cr></lf></cr> | # (3) Parameter # (4) Example Error: A5<CR><LF> # +ADV:ABCDE<CR> OK<CR><LF> +ADV:012345678901234567890<CR> OK<CR><LF> +ADV:01234567890123456789ABCD<CR> Error: A2<CR><LF> (refer to 3.1.25) +ADV:012345<CR> (refer to 3.1.25) # +ADV012345<CR> Error: A1<CR><LF> (refer to 3.1.25) # 3.2.2+ADS # (1) Description This command is used to enable broadcast packet transmission. # (2) Syntax | Execution Command | Response | |-------------------|---| | +ADS <cr></cr> | OK <cr><lf> Error: A1<cr><lf> (refer to 3.1.25) Error: A3<cr><lf> (refer to 3.1.25) Error: A5<cr><lf> (refer to 3.1.25)</lf></cr></lf></cr></lf></cr></lf></cr> | # (3) Example | +ADS <cr></cr> | | |------------------------------|-------------------| | OK <cr><lf></lf></cr> | | | +ADS <cr></cr> | | | Error: A1 <cr><lf></lf></cr> | (refer to 3.1.25) | | +ADS <cr></cr> | | | Error: A3 <cr><lf></lf></cr> | (refer to 3.1.25) | | +ADS <cr></cr> | | | Error: A5 <cr><lf></lf></cr> | (refer to 3.1.25) | # 3.2.3 + ADP # (1) Description This command is used to stop broadcast packet transmission. # (2) Syntax | Execution Command | Response | | |-------------------|---|---| | +ADP <cr></cr> | OK <cr><lf> Error: A1<cr><lf> Error: A5<cr><lf></lf></cr></lf></cr></lf></cr> | , | # (3) Example | +ADP <cr></cr> | | | |------------------------------|-------------------|--| | OK <cr><lf></lf></cr> | | | | +ADP <cr></cr> | | | | Error: A1 <cr><lf></lf></cr> | (refer to 3.1.25) | | | +ADP <cr></cr> | | | | Error: A5 <cr><lf></lf></cr> | (refer to 3.1.25) | | # 3.2.4 + ADR # (1) Description This command can show the RSSI of Broadcaster when the module was the Observer. # (2) Syntax | Execution Command | Response | |-------------------|---| | +ADR <cr></cr> | +ADR: <mac address="">,<rssi> OK<cr><lf> Error: A1<cr><lf> (refer to 3.1.25) Error: A4<cr><lf> (refer to 3.1.25)</lf></cr></lf></cr></lf></cr></rssi></mac> | # (3) Parameter | < mac address > | The mac address of peer device
Range: 000DE06D0000 ~ 000DE06DFFFF
Length: 6 Bytes | |-----------------|---| | < RSSI > | The RSSI of Broadcaster | # (4) Example # +ADR < CR > +ADR: 000DE06D0001,-051<CR><LF> # +ADR<CR> +ADR: 000DE06D0001,-051<CR><LF> +ADR: 000DE06D0002,-060<CR><LF> # +ADR < CR > Error: A1<CR><LF> (refer to 3.1.25) # +ADR < CR > Error: A4<CR><LF> (refer to 3.1.25) # 4. Configuration Utility The tBLE-720/BLEUSB utility had four functions. It can load the configuration, write the configuration, update the firmware and test the module. # 4.1 Main Window of tBLE-720/BLE-USB Utility User can load the configuration in the main page. First, it need select the COM port and baud rate. Second, it need press "Open Port" button, and the utility would automatically load the configuration. If load configuration was success, and the result was shown in Figure 4-1. If load configuration was fail, and the result was shown in Figure 4-2. ## +BI F-720/BI F-USB Utility Setting Test Firmware Upgrade About COM Port Status Device Information COM Port: COM1 Bluetooth LE Version: -Model Name: -Baud Rate: 115200 Device Address: -Broadcast Role: we Identify Key: -Broadcast Interval: Baud Rate: -Send Mode: -RF Power Level: Refresh Parameter Figure 4-1. load success Figure 4-2. load fail # 4.2 Set Configuration on Utility The setting page was shown in Figure 4-3. The "Basic Parameter Setting" page can set up the configuration. The "Recovery Factory Setting" can recovery module to factory setting. Figure 4-3. Setting configuration page # 4.2.1 Basic Parameter Setting Page The basic parameter setting page was shown in the Figure 4-4. The basic parameter setting had 6 steps. User can load the configuration in the step 1. The configuration can save in the step6. The "Next" button can go into next step. The "Previous" button can go back to previous step. Figure 4-4. Basic parameter setting ### ■ Step1 The step 1 was established serial wire connection between BLE-USB and host PC. If the COM port already opened in the main page, the COM port will automatically open when you enter this page. If the configuration was saved in the step 6, you could load the configuration by "Load Configuration" button. The filename extension of configuration is *.txt. The Figure 4-5 is a warning message when the COM port opens fail. Please check the COM port number and baud rate is correct. Figure 4-5. Open COM port fail # ■ Step2 ~ 5 User can select different parameters in the step2 to step5. When the configuration was selected, you could click the "Next" button. The "Next" button will be switching to next step. You also can use the "Previous" button, and it will back to the previous step. All of the configurations will upload to the module in the step6. ### ■ Step2 The Step 2 can change broadcast parameter. - Broadcast role: role of broadcast mode (refer to 1.5.2 and 3.1.24). - Broadcast channel: change the broadcast channel when the module was in the broadcast mode (refer to 3.1.6). - Broadcast Interval: how often to send a broadcast packet Figure 4-6. Broadcast parameter setting ### ■ Step 3 The step 3 can change the connection parameter. - Connection role: role of connection mode (refer to 1.5.1 and 3.1.20) - Peer amount: Maximum amount of slave (refer to 3.1.13) - Slave device number: the device name of slave when slave is advertising.(refer to 3.1.15) - Group ID: the ID of connection group (refer to 3.1.16). Figure 4-7. Connection parameter setting # ■ Step4 The step 4 is used to change the Master identify mechanism. - Enable Master Identify Mechanism: Enable or disable Master identify mechanism (refer to 1.6 and 3.1.21). - Identify Key: Set the identification packet (refer to 1.6 and 3.1.22). Figure 4-8. Master identify mechanism setting ### ■ Step5 The step 5 can change the baud rate, send mode and RF power. • Baud rate: the baud rate of BLE-USB (refer to 3.1.7). - Send Mode: transmission mode of BLE-USB (refer to 3.1.23). - RF power level: the RF power level (refer to 3.1.17). Figure 4-9. Other parameter setting ### ■ Step6 The step 6 is final step in the basic parameter setting page. You can save the configuration by "Save Configuration" button, but it need select a store path before you click "Save Configuration" button. Please click the "Upload Setting" to upload the configuration into the BLE-USB. The utility will show an information message after the configuration was done. The BLE-USB will automatically restart by itself after the configuration uploaded complete. The utility will show an error message that the configuration had uploaded fail. Please re-power on the BLE-USB, and back to the step 1. Figure 4-11. Upload fail ### 4.2.2 Recovery Factory Setting Page The "Recovery Factory Setting" Page can recovery module to factory setting. First, Pleas click "Open Port" button to make a serial connection between BLE-USB and host PC. Second, Please click the "Recovery" button to start recovery process, and the utility will show a message after recovery process is complete. If the recovery process is fail, BLE-USB need repower and do it again.
Figure 4-12. Recovery success Figure 4-13. Recovery fail 確定 # **4.3** Test Module on Utility The module test page was shown in the Figure 4-14. The utility supports two types for the module test. The "connection Mode" is used to test module in the connection mode (refer to 1.3.2). The "Broadcast Mode" is used to test the module in the broadcast mode (refer to 1.3.1) Figure 4-14. Module test page ### 4.3.1 Connection Mode The main page of connection mode was shown in the Figure 4-15. This page can send or receive data from peer device in connection mode. It also can load the configuration from the module. Figure 4-15. Main page of connection mode ### ■ Open the COM port It needs to make a serial connection between BLE-USB and host PC. The utility will check the transmission mode after you click the "Open Port" button. If the module wasn't in the connection mode, the warring message would be shown after you clicked the "Open Port" button. User need switch module to the connection mode (refer to 4.2). If the serial port setting was incorrect, the error would be shown after you clicked the "Open Port" button. Please check the serial setting is correct, and re-open COM port again. Figure 4-16. Warring message Figure 4-17. Error message # Send data to peer device You can type data in the textbox and click the "Send" button. The data of textbox will send to the peer device. This data will also show print to the textbox. Figure 4-18. Textbox and Send button Figure 4-19. Print to the textbox ### ■ End with the String It will add into the end of the string. You can select the types you want to add into the end of the string. Figure 4-20. End with the String ### ■ Auto Send This feature will send the message automatically. First, it need set the time interval in the textbox. Second, please click "Set" button and the "Send" button will be enable. Third, please click "Send" button to start transmission the packet. Figure 4-21. Auto send ### ■ Receive Data When the module was received data from the peer device. It will print the data to the textbox. Figure 4-22. Receive data ### ■ Module Configuration The utility will load the module configuration when the "Open Port" had clicked. It will print the connection role, peer amount, group ID, device name and address to the textbox. In addition, you can click the "Read Connection List" button; it will show the status of connection. Figure 4-23. Module Configuration Figure 4-24. Read button Figure 4-25. Status of connection ### 4.3.2Broadcast Mode The main page of broadcast mode was shown in the Figure 4-26. This page can send or receive data from peer device in broadcast mode. It also can load the configuration from the module. Figure 4-26. Main page of broadcast mode ### Open the COM port It needs to make a serial connection between BLE-USB and host PC. The utility will check the broadcast mode after you click the "Open Port" button. If the module wasn't in the broadcast mode, the warring message would be shown after you clicked the "Open Port" button. User need switch module to the broadcast mode (refer to 4.2). If the serial port setting was incorrect, the error would be shown after you clicked the "Open Port" button. Please check the serial setting is correct, and re-open COM port again. Figure 4-27. Warring message Figure 4-28. Error message # Send data to peer device Only the Broadcast can send the packet to the peer device. This feature will disable when the module is the Observer. You need to set the packet in the textbox and click the "Set Packet" button to send the packet. It will appear an information message after you click the button, and then the Broadcast will start sending the packet with timer interval. You also can pause or resume the packet. Information Message X The ADV packet is setting. 確定 Figure 4-29. Set the packet Figure 4-30. Information message ### ■ Module Configuration The utility will load the module configuration when the "Open Port" had clicked. It will print the broadcast role, broadcast channel, broadcast interval, group ID and address to the textbox. In addition, you can click the "Read Advertiser Information" button; It will show the status of peer device. Figure 4-31. Module Configuration Figure 4-32. Read button Figure 4-33. status of peer device # Receive Data When the module was received data from the Broadcaster. It will print the data to the textbox. Figure 4-34. Receive data # **4.4** Firmware Upgrade on Utility Although the utility support two types for firmware upgrade, but the BLE-USB only supports OTA firmware upgrade. The OTA firmware upgrade need Bluetooth interface in your computer. The Bluetooth interface must be compiling with the Bluetooth 4.0 standards. If you don't have Bluetooth interface in your computer, you need to buy a <u>BLE USB dongle</u>. Users just need to execute "Firmware Upgrade" and follow the below steps to complete the firmware upgrade process. Figure 4-35. Firmware upgrade page ### ■ Disable the Master identification mechanism You need to disable the Master identification mechanism (refer to 3.1.21). The Master identification mechanism can disable by utility (refer to 4.2.1) or AT command. Figure 4-36. Disable Master Identification mechanism by utility ### ■ Switch BLE-USB to connection mode and Slave The OTA only work when the BLE-USB is the Salve in the connection mode. You can use the utility (refer to 4.2.1.) to switch the role and transmission mode. The AT command (refer to 3.1.20 and 3.1.23) also can do it. Figure 4-37. Switch to Slave by utility Figure 4-38. Switch to connection mode by utility ### ■ Connect the BLE-USB by your computer You need to connect the BLE-USB by your Bluetooth interface on your computer. The device name is BUSB-XXX. The "XXX" can change by AT command (refer to 3.1.15) or the utility (refer to 4.2.1). If the Bluetooth interface didn't scan any device, please repower the BLE-USB. Ensure your device is Advertising so the PC can find it. Figure 4-39. Connect BLE-USB with Windows 10 Figure 4-40. Change slave device number by utility # ■ Upgrade the firmware # Step 1: Open the OTA firmware upgrade page Figure 4-41. Open the firmware upgrade page Step 2: check the OTA step, and click "OK" button. Figure 4-42. OTA step Step 3: Click the "Open" button. Select the firmware path. The filename extension of firmware is *.signed. Figure 4-43. Select firmware path Step 4: Click the "Upload Firmware" button. The OTA program will be opening after click the "Upload Firmware" button. Figure 4-44. Click the "Upload Firmware" Step 5: Choose the device address. You can use the AT command (refer to 3.1.12) to make sure the device address. Figure 4-45. Select device address Step 6. The OTA firmware upgrade will be start after click the "Start" button. Figure 4-46. Click the "Start" button # Step 7. Click the "Done" button Figure 4-47. Click the "Done" button # 5. Technical support Please contact us if you have any questions about products. ICP DAS website: http://www.icpdas.com Email: service@icpdas.com